scholarly journals ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT)

2020 ◽  
Vol 644 ◽  
pp. A119 ◽  
Author(s):  
L. Podio ◽  
A. Garufi ◽  
C. Codella ◽  
D. Fedele ◽  
K. Rygl ◽  
...  

Context. Planets form in protoplanetary disks and inherit their chemical composition. It is therefore crucial to understand the molecular content of protoplanetary disks in their gaseous and solid components. Aims. We aim to characterize the distribution and abundance of molecules in the protoplanetary disk of DG Tau and to compare them with its dust distribution. Methods. In the context of the ALMA chemical survey of Disk-Outflow sources in the Taurus star forming region (ALMA-DOT) we analyze ALMA observations of the nearby disk-outflow system around the T Tauri star DG Tau in H2CO 31,2−21,1, CS 5−4, and CN 2−1 emission at an unprecedented resolution of ~0′′.15, which means ~18 au at a distance of 121 pc. Results. Both H2CO and CS emission originate from a disk ring located at the edge of the 1.3 mm dust continuum. CS probes a disk region that is slightly further out with respect to H2CO; their peaks in emission are found at ~70 and ~60 au, with an outer edge at ~130 and ~120 au, respectively. CN originates from an outermost and more extended disk/envelope region with a peak at ~80 au and extends out to ~500 au. H2CO is dominated by disk emission, while CS also probes two streams of material possibly accreting onto the disk with a peak in emission at the location where the stream connects to the disk. CN emission is barely detected and both the disk and the envelope could contribute to the emission. Assuming that all the lines are optically thin and emitted by the disk molecular layer in local thermodynamic equilibrium at temperatures of 20−100 K, the ring- and disk-height-averaged column density of H2CO is 2.4−8.6 × 1013 cm−2, that of CS is ~1.7−2.5 × 1013 cm−2, while that of CN is ~1.9−4.7 × 1013 cm−2. Unsharp masking reveals a ring of enhanced dust emission at ~40 au, which is located just outside the CO snowline (~30 au). Conclusions. Our finding that the CS and H2CO emission is co-spatial in the disk suggests that the two molecules are chemically linked. Both H2CO and CS may be formed in the gas phase from simple radicals and/or desorbed from grains. The observed rings of molecular emission at the edge of the 1.3 mm continuum may be due to dust opacity effects and/or continuum over-subtraction in the inner disk, as well as to increased UV penetration and/or temperature inversion at the edge of the millimeter(mm)-dust which would cause enhanced gas-phase formation and desorption of these molecules. CN emission originates only from outside the dusty disk, and is therefore even more strongly anti-correlated with the continuum, suggesting that this molecule is a good probe of UV irradiation. The H2CO and CS emission originate from outside the ring of enhanced dust emission, which also coincides with a change in the linear polarization orientation at 0.87 mm. This suggests that outside the CO snowline there could be a change in the dust properties that manifests itself as an increase in the intensity (and change of polarization) of the continuum and of the molecular emission.

2019 ◽  
Vol 623 ◽  
pp. L6 ◽  
Author(s):  
L. Podio ◽  
F. Bacciotti ◽  
D. Fedele ◽  
C. Favre ◽  
C. Codella ◽  
...  

Context. Planets form in protoplanetary disks and inherit their chemical compositions. Aims. It is thus crucial to map the distribution and investigate the formation of simple organics, such as formaldehyde and methanol, in protoplanetary disks. Methods. We analyze ALMA observations of the nearby disk-jet system around the T Tauri star DG Tau in the o − H2CO 31, 2 − 21, 1 and CH3OH 3−2, 2 − 4−1, 4 E, 50, 5 − 40, 4 A transitions at an unprecedented resolution of $ {\sim}0{{\overset{\prime\prime}{.}}}{15} $, i.e., ∼18 au at a distance of 121 pc. Results. The H2CO emission originates from a rotating ring extending from ∼40 au with a peak at ∼62 au, i.e., at the edge of the 1.3 mm dust continuum. CH3OH emission is not detected down to an rms of 3 mJy beam−1 in the 0.162 km s−1 channel. Assuming an ortho-to-para ratio of 1.8−2.8 the ring- and disk-height-averaged H2CO column density is ∼0.3−4 × 1014 cm−2, while that of CH3OH is < 0.04−0.7 × 1014 cm−2. In the inner 40 au no o − H2CO emission is detected with an upper limit on its beam-averaged column density of ∼0.5−6 × 1013 cm−2. Conclusions. The H2CO ring in the disk of DG Tau is located beyond the CO iceline (RCO ∼ 30 au). This suggests that the H2CO abundance is enhanced in the outer disk due to formation on grain surfaces by the hydrogenation of CO ice. The emission peak at the edge of the mm dust continuum may be due to enhanced desorption of H2CO in the gas phase caused by increased UV penetration and/or temperature inversion. The CH3OH/H2CO abundance ratio is < 1, in agreement with disk chemistry models. The inner edge of the H2CO ring coincides with the radius where the polarization of the dust continuum changes orientation, hinting at a tight link between the H2CO chemistry and the dust properties in the outer disk and at the possible presence of substructures in the dust distribution.


1994 ◽  
Vol 140 ◽  
pp. 274-275
Author(s):  
Nagayoshi Ohashi ◽  
Ryohei Kawabe ◽  
Masahiko Hayashi ◽  
Masato Ishiguro

AbstractThe Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 were invisible protostars and 6 were youngest T Tauri stars. We observed the 98 GHz continuum and CS(J=2-1) line emissions simultaneously with spatial resolutions of 2.8”- 8.8” (360 AU-1,200 AU). Unresolved continuum emission was detected from 5 of 6 T Tauri stars and 2 of 13 protostar candidates. The continuum emission arose from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability for the 98 GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.


2020 ◽  
Vol 639 ◽  
pp. A121 ◽  
Author(s):  
S. Facchini ◽  
M. Benisty ◽  
J. Bae ◽  
R. Loomis ◽  
L. Perez ◽  
...  

We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μJy beam−1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few MJup), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N2 snowlines.


2004 ◽  
Vol 202 ◽  
pp. 335-337
Author(s):  
Jane Gregorio-Hetem ◽  
Annibal Hetem

A model with two dust components is used do explain the circumstellar structure of weak-T Tauri stars. The IR-excess was calculated and compared to spectroscopic criteria in order to classify the objects according an evolutionary sequence. About 46% of the sample correspond to young main sequence stars showing dust distribution consistent with a disrupted disk, that could be possibly caused by the formation of a planetary system.


2008 ◽  
Vol 678 (2) ◽  
pp. 1119-1126 ◽  
Author(s):  
A. M. Hughes ◽  
D. J. Wilner ◽  
C. Qi ◽  
M. R. Hogerheijde

1991 ◽  
Vol 147 ◽  
pp. 353-356
Author(s):  
N. Ohashi ◽  
R. Kawabe ◽  
M. Hayashi ◽  
M. Ishiguro

The CS (J = 2 — 1) line and 98 GHz continuum emission have been observed for 11 protostellar IRAS sources in the Taurus molecular cloud with resolutions of 2.6″−8.8″ (360 AU—1200 AU) using the Nobeyama Millimeter Array (NMA). The CS emission is detected only toward embedded sources, while the continuum emission from dust grains is detected only toward visible T Tauri stars except for one embedded source, L1551-IRS5. This suggests that the dust grains around the embedded sources do not centrally concentrate enough to be detected with our sensitivity (∼4 m Jy r.m.s), while dust grains in disks around the T Tauri stars have enough total mass to be detected with the NMA. The molecular cloud cores around the embedded sources are moderately extended and dense enough to be detected in CS, while gas disks around the T Tauri are not detected because the radius of such gas disks may be smaller than 70 (50 K/Tex) AU. These results imply that the total amount of matter within the NMA beam size must increase when the central objects evolve into T Tauri stars from embedded sources, suggesting that the compact and highly dense disks around T Tauri stars are formed by the dynamical mass accretion during the embedded protostar phase.


2002 ◽  
Vol 580 (1) ◽  
pp. 343-357 ◽  
Author(s):  
C. Batalha ◽  
N. M. Batalha ◽  
S. H. P. Alencar ◽  
D. F. Lopes ◽  
E. S. Duarte

2006 ◽  
Vol 647 (1) ◽  
pp. L57-L60 ◽  
Author(s):  
D. Semenov ◽  
D. Wiebe ◽  
Th. Henning

2012 ◽  
Vol 540 ◽  
pp. A46 ◽  
Author(s):  
S. Daemgen ◽  
S. Correia ◽  
M. G. Petr-Gotzens

2012 ◽  
Vol 12 (21) ◽  
pp. 10545-10567 ◽  
Author(s):  
P. Nabat ◽  
F. Solmon ◽  
M. Mallet ◽  
J. F. Kok ◽  
S. Somot

Abstract. The present study investigates the dust emission and load over the Mediterranean basin using the coupled chemistry–aerosol–regional climate model RegCM-4. The first step of this work focuses on dust particle emission size distribution modeling. We compare a parameterization in which the emission is based on the individual kinetic energy of the aggregates striking the surface to a recent parameterization based on an analogy with the fragmentation of brittle materials. The main difference between the two dust schemes concerns the mass proportion of fine aerosol that is reduced in the case of the new dust parameterization, with consequences for optical properties. At the episodic scale, comparisons between RegCM-4 simulations, satellite and ground-based data show a clear improvement using the new dust distribution in terms of aerosol optical depth (AOD) values and geographic gradients. These results are confirmed at the seasonal scale for the investigated year 2008. This change of dust distribution has sensitive impacts on the simulated regional dust budget, notably dry dust deposition and the regional direct aerosol radiative forcing over the Mediterranean basin. In particular, we find that the new size distribution produces a higher dust deposition flux, and smaller top of atmosphere (TOA) dust radiative cooling. A multi-annual simulation is finally carried out using the new dust distribution over the period 2000–2009. The average SW radiative forcing over the Mediterranean Sea reaches −13.6 W m−2 at the surface, and −5.5 W m−2 at TOA. The LW radiative forcing is positive over the basin: 1.7 W m−2 on average over the Mediterranean Sea at the surface, and 0.6 W m−2 at TOA.


Sign in / Sign up

Export Citation Format

Share Document