scholarly journals High-resolution observations of the solar photosphere, chromosphere, and transition region

2020 ◽  
Vol 641 ◽  
pp. A146
Author(s):  
L. H. M. Rouppe van der Voort ◽  
B. De Pontieu ◽  
M. Carlsson ◽  
J. de la Cruz Rodríguez ◽  
S. Bose ◽  
...  

NASA’s Interface Region Imaging Spectrograph (IRIS) provides high-resolution observations of the solar atmosphere through ultraviolet spectroscopy and imaging. Since the launch of IRIS in June 2013, we have conducted systematic observation campaigns in coordination with the Swedish 1 m Solar Telescope (SST) on La Palma. The SST provides complementary high-resolution observations of the photosphere and chromosphere. The SST observations include spectropolarimetric imaging in photospheric Fe I lines and spectrally resolved imaging in the chromospheric Ca II 8542 Å, Hα, and Ca II K lines. We present a database of co-aligned IRIS and SST datasets that is open for analysis to the scientific community. The database covers a variety of targets including active regions, sunspots, plages, the quiet Sun, and coronal holes.

1993 ◽  
Vol 141 ◽  
pp. 63-66 ◽  
Author(s):  
N. Mein ◽  
P. Mein ◽  
B. Schmieder ◽  
O. Engvold ◽  
R. Molowny ◽  
...  

On May 7, 1991, several ground-based instruments have been coordinated to observe AR 6615 (S10-W26), before and during the flight of the SERTS rocket experiment (Schmieder et al.,1992):– Imaging spectroscopy (MSDP) at the VTT telescope of Tenerife (collaboration Paris-Meudon and KIS Freiburg). Hα and NaD1 are observed simultaneously in 2D fields, with 9 and 11 wavelengths respectively (Mein, 1991).– High resolution “white light” pictures (around 4686Å) at the Swedish Vacuum Solar Telescope (SVST) of La Palma (Scharmer et al., 1985).We present below some data from both instruments. Magnetic field maps are also available from the Huairou magnetograph (China), and from the GCT telescope (KIS/Tenerife).


1990 ◽  
Vol 138 ◽  
pp. 49-66 ◽  
Author(s):  
A. M. Title ◽  
R. A. Shine ◽  
T. D. Tarbell ◽  
K. P. Topka ◽  
G. B. Scharmer

High resolution observations, theoretical models, and simulations are discovering many new and exciting phenomena in the solar atmosphere. In recent years, there have been a number of very high quality observations of the solar surface and lower photosphere made on the ground at Sacramento Peak Observatory, Pic du Midi, and at the Swedish Solar Observatory, La Palma. In space the Solar Optical Universal Polarimeter (SOUP) has made diffraction limited (30 cm aperture) time sequences completely free from atmospheric disturbances. The recognition that significant progress is possible in non-linear dynamics has encouraged a number of theoretical groups to attack the problem of convection in the solar atmosphere. Two, two and a half, and three dimensional simulations yield the geometry of the flow below the surface and a prediction of the response of the atmosphere above the surface. Models of magnetic flux tubes are now very sophisticated, and modern high resolution observations should be able to test these theories. The development of the technique of Local Correlation Tracking (LCT) has allowed the direct measurement of horizontal velocities in the atmosphere near disk center. The combination of Doppler and LCT measurements allows a direct measurement of the photospheric vector flow field. Measurements from SOUP, Sacramento Peak, Pic du Midi, and La Palma have shown that mesoscale flows cover the surface and that there exist still larger scale flows associated with emerging pores and active regions. Much of the recent experimental and theoretical progress in processing and understanding high resolution data has resulted from the availability of powerful scientific workstations for user interaction, large amounts of memory for image storage, and supercomputers for the massive fluid dynamics calculations. We are now in the very early stages of learning how to use these new computer tools to identify and follow processes in the solar atmosphere.


2013 ◽  
Vol 8 (S300) ◽  
pp. 117-120 ◽  
Author(s):  
Zhi Xu ◽  
Zhen Y. Jin ◽  
Fang Y. Xu ◽  
Zhong Liu ◽  

AbstractThe New Vacuum Solar Telescope (NVST) is a new generation ground-based solar facility of China. One of the post-focus instruments is the multi-channel high-resolution imaging system, which is designed to simultaneously observe the dynamic gas motion in the solar photosphere and chromosphere. Since October of 2010 it has been operational in the NVST and some necessary updates were performed in past 2 years. Here we first give a general introduction of this system, and then we exhibit one near-limb observation of solar filaments obtained using this system. By this communication, we would like to show the potential ability to perform the high resolution observation of solar filaments (prominences) using the multi-channel imaging system in the NVST.


1993 ◽  
Vol 141 ◽  
pp. 542-544
Author(s):  
P. Mein ◽  
N. Mein

AbstractWe use imaging spectroscopy from the MSDP of the VTT telescope in Tenerife (collaboration Paris-Meudon Observatory and Kiepenheuer Institut) to analyse Doppler velocities of arch filaments in Hα and NαD1. The geometry of the magnetic loops is deduced from perspective effects with a simple dynamical model. Velocities are correlated in both lines.Further results are expected from simultaneous observations with other instruments (SVST of La Palma and Huairou magnetograph).


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


Author(s):  
M. Kurucz ◽  
R. Flender ◽  
T. Grosz ◽  
A Borzsonyi ◽  
U. Gimzevskis ◽  
...  

Author(s):  
Tímea Grósz ◽  
Máté Kurucz ◽  
Roland Flender ◽  
Ádám Börzsönyi ◽  
Ugnius Gimzevskis ◽  
...  

1990 ◽  
Vol 138 ◽  
pp. 147-152 ◽  
Author(s):  
T. Tarbell ◽  
S. Ferguson ◽  
Z. Frank ◽  
R. Shine ◽  
A. Title ◽  
...  

On 29 September 1988, filtergrams of the solar photosphere with excellent resolution (0.3 to 0.5 arcsecond) were obtained at the Swedish Solar Observatory on La Palma, Canary Islands. An outstanding 2.5 hour run of digital filtergram observations was obtained, looking at a small area within an active region near disk center. On 6 August 1987, an 80 minute run of similar observations was obtained at the Vacuum Tower Telescope of the National Solar Observatory at Sacramento Peak. Digital and video movies have been made of Dopplergrams, magnetograms, line center, continuum, and white light images. Several examples of magnetic field emergence and formation of flux tubes can be studied in detail in the movies. The relationship between photospheric bright points, “filigree”, the line center brightness, and the magnetic field has been established for individual images in analysis to date.


2012 ◽  
Vol 8 (S294) ◽  
pp. 95-106 ◽  
Author(s):  
Manfred Schüssler

AbstractAn overview is given about recent developments and results of comprehensive simulations of magneto-convective processes in the near-surface layers and photosphere of the Sun. Simulations now cover a wide range of phenomena, from whole active regions, over individual sunspots and pores, magnetic flux concentrations and vortices in intergranular lanes, down to the intricate mixed-polarity structure of the magnetic field generated by small-scale dynamo action. The simulations in concert with high-resolution observations have provided breakthroughs in our understanding of the structure and dynamics of the magnetic fields in the solar photosphere.


2020 ◽  
Vol 642 ◽  
pp. A233
Author(s):  
R. Sharma ◽  
C. Cid

Context. Active regions in close proximity to coronal holes, also known as anemone regions, are the best candidates for studying the interaction between closed and open magnetic field topologies at the Sun. Statistical investigation of their source-region characteristics can provide vital clues regarding their possible association with energetic events, relevant from space weather perspectives. Aims. The main goal of our study is to understand the distinct properties of flaring and non-flaring anemone active regions and their host coronal holes, by examining spatial and magnetic field distributions during the rise phase of the solar cycle, in the years 2011–2014. Methods. Anemone regions were identified from the minimum-distance threshold, estimated using the data available in the online catalogs for on-disk active regions and coronal holes. Along with the source-region area and magnetic field characteristics, associated filament and flare cases were also located. Regions with and without flare events were further selected for a detailed statistical examination to understand the major properties of the energetic events, both eruptive and confined, at the anemone-type active regions. Results. Identified anemone regions showed weak asymmetry in their spatial distribution over the solar disk, with yearly average independent from mean sunspot number trend, during the rise phase of solar cycle 24. With the progression in solar cycle, the area and minimum-distance parameters indicated a decreasing trend in their magnitudes, while the magnetic field characteristics indicated an increase in their estimated magnitudes. More than half of the regions in our database had an association with a filament structure, and nearly a third were linked with a magnetic reconnection (flare) event. Anemone regions with and without flares had clear distinctions in their source-region characteristics evident from the distribution of their properties and density analysis. The key differences included larger area and magnetic field magnitudes for flaring anemone regions, along with smaller distances between the centers of the active region and its host coronal hole.


Sign in / Sign up

Export Citation Format

Share Document