scholarly journals Kernel nullers for an arbitrary number of apertures

2020 ◽  
Vol 642 ◽  
pp. A202
Author(s):  
Romain Laugier ◽  
Nick Cvetojevic ◽  
Frantz Martinache

Context. The use of interferometric nulling for the direct detection of extrasolar planets is in part limited by the extreme sensitivity of the instrumental response to tiny optical path differences between apertures. The recently proposed kernel-nuller architecture attempts to alleviate this effect with an all-in-one combiner design that enables the production of observables inherently robust to residual optical path differences (≪λ). Aims. To date, a unique kernel-nuller design has been proposed ad hoc for a four-beam combiner. We examine the properties of this original design and generalize them for an arbitrary number of apertures. Methods. We introduce a convenient graphical representation of the complex combiner matrices that model the kernel nuller and highlight the symmetry properties that enable the formation of kernel nulls. The analytical description of the nulled outputs we provide demonstrates the properties of a kernel nuller. Results. Our description helps outline a systematic way to build a kernel nuller for an arbitrary number of apertures. The designs for three- and six-input combiners are presented along with the original four-input concept. The combiner grows in complexity with the square of the number of apertures. While one can mitigate this complexity by multiplexing nullers working independently over a smaller number of sub-apertures, an all-in-one kernel nuller recombining a large number of apertures appears as the most efficient way to characterize a high-contrast complex astrophysical scene. Conclusions. Kernel nullers can be designed for an arbitrary number of apertures that produce observable quantities robust to residual perturbations. The designs we recommend are lossless and take full advantage of all the available interferometric baselines. They are complete, result in as many kernel nulls as the theoretically expected number of closure-phases, and are optimized to require the smallest possible number of outputs.

2021 ◽  
pp. 2130006
Author(s):  
Giampaolo Cicogna

In the context of stationary bifurcation problems admitting a symmetry, this paper is focused on the key notion of Fixed Subspace (FS), and provides a review of some applications aimed at detecting bifurcating solutions in various situations. We start recalling, in its commonly used simplified version, the old Equivariant Bifurcation Lemma (EBL), where the FS is one-dimensional; then we provide a first generalization in a typical case of non-semisimple critical eigenvalues, where the presence of the symmetry produces a non-trivial situation. Next, we consider the case of FSs of dimension [Formula: see text] in very different contexts. First, relying on the topological index theory and in particular on the Krasnosel’skii theorem, we provide a largely applicable statement of an extension of the EBL. Second, we propose a completely different and new application which combines symmetry properties with the notion of stability of bifurcating solutions. We also provide some simple examples, constructed ad hoc to illustrate the various situations.


Icarus ◽  
2005 ◽  
Vol 178 (2) ◽  
pp. 570-588 ◽  
Author(s):  
Bertrand Mennesson ◽  
Alain Léger ◽  
Marc Ollivier

2007 ◽  
Vol 8 (3-4) ◽  
pp. 365-373 ◽  
Author(s):  
Bruce Macintosh ◽  
James Graham ◽  
David Palmer ◽  
Rene Doyon ◽  
Don Gavel ◽  
...  

2013 ◽  
Vol 8 (S299) ◽  
pp. 1-11 ◽  
Author(s):  
Beth Biller

AbstractThe last decade has yielded the first images of exoplanets, considerably advancing our understanding of the properties of young giant planets. In this talk I will discuss current results from ongoing direct imaging efforts as well as future prospects for detection and characterization of exoplanets via high contrast imaging. Direct detection, and direct spectroscopy in particular, have great potential for advancing our understanding of extrasolar planets. In combination with other methods of planet detection, direct imaging and spectroscopy will allow us to eventually: 1) study the physical properties of exoplanets (colors, temperatures, etc.) in depth and 2) fully map out the architecture of typical planetary systems. Direct imaging has offered us the first glimpse into the atmospheric properties of young high-mass (3-10 MJup) exoplanets. Deep direct imaging surveys for exoplanets have also yielded the strongest constraints to date on the statistical properties of wide giant exoplanets. A number of extremely high contrast exoplanet imaging instruments have recently come online or will come online within the next year (including Project 1640, SCExAO, SPHERE, GPI, among others). I will discuss future prospects with these instruments.


2006 ◽  
Vol 14 (17) ◽  
pp. 7515 ◽  
Author(s):  
T. Fusco ◽  
G. Rousset ◽  
J.-F. Sauvage ◽  
C. Petit ◽  
J.-L. Beuzit ◽  
...  

The convergent beam and bend extinction contour techniques of electron microscopy are capable of providing much more information than can be obtained from conventional diffraction patterns and it is the objective of this work to examine the symmetry properties of each of these patterns. The diffraction of fast electrons by a thin parallelsided slab has been studied by group theory and by a graphical construction. We find that the pattern symmetries may be described by thirty-one diffraction groups and that each of these diffraction groups is isomorphic to one of the point groups of diperiodic plane figures and to one of the thirty-one Shubnikov groups of coloured plane figures. A graphical representation of each diffraction group is given, together with tables showing how the diffraction groups are related to the specimen point groups and under certain assumptions to the crystal point groups. These tables assume the symmetric Laue condition and ignore the presence of irreducible lattice translations normal to the slab. By using the tables, crystal point groups can be obtained from convergent beam or bend contour patterns. The method is demonstrated by experiments on several materials, but particularly on germanium and gallium-arsenide specimens since the similarity of these materials exemplifies the sensitivity of the technique.


2014 ◽  
Vol 12 (02) ◽  
pp. 1461018 ◽  
Author(s):  
Alessia Allevi ◽  
Stefano Olivares ◽  
Maria Bondani

We present the generation and characterization of the class of bracket states, namely phase-sensitive mixtures of coherent states exhibiting symmetry properties in the phase-space description. A bracket state can be seen as the statistical ensemble arriving at a receiver in a typical coherent-state-based communication channel. We show that when a bracket state is mixed at a beam splitter with a local oscillator, both the emerging beams exhibit a Fano factor larger than 1 and dependent on the relative phase between the input state and the local oscillator. We discuss the possibility to exploit this dependence to monitor the phase difference for the enhancement of the performances of a simple communication scheme based on direct detection. Our experimental setup involves linear optical elements and a pair of photon-number-resolving detectors operated in the mesoscopic photon-number domain.


2020 ◽  
Vol 11 (30) ◽  
pp. 178-188
Author(s):  
G. S. Vasilyev ◽  
O. R. Kuzichkin ◽  
I. A. Kurilov ◽  
D. I. Surzhik

Creation of reliable and efficient flying ad-hoc networks (FANET) requires detailed development of the model of the physical layer of data transmission, determined by the conditions of operation of the networks. The problems of well-known software simulators of communication networks are the simplified nature of the physical layer, as well as the inability to obtain specific analytical solutions in the process of simulation. The hierarchical model of formation of information signals which allows to represent various types of communication channels and the channel-forming equipment, for providing their analytical description and the further analysis is developed. The model allows to describe communication channels between UAVs and (or) ground control centers taking into account the effects of attenuation, intersymbol interference, multipath propagation of signals; schemes of terminal and intermediate network equipment with linear and nonlinear signal conversion; circuits with forward regulation, backward regulation and combined regulation; circuits with multi-channel signal generation and processing, as well as cross-links between channels. Analytical expressions of the transfer function of the generalized hierarchical model for an arbitrary number of disclosed levels of hierarchy are obtained. An example of the presentation and study of the UAV transmitter circuit on the basis of a hierarchical model of signal formation is considered.


Author(s):  
Prasenjit Saha ◽  
Paul A. Taylor

Astronomy and recording of the motion of celestial objects are ancient practices, but what is now called astrophysics arguably began with Newtonian gravity and the concept of orbits as dynamical phenomena. This chapter provides a modern perspective on the early problems of gravitational dynamics, from Kepler’s laws up to the virial theorem for an arbitrary number of gravitating bodies. Even a simple gravitating system with only two bodies turns out to have many interesting features, such as the gravitational capture of material by protoplanets. The study of orbital motions also includes applications to observing extrasolar planets and stars near the black hole at the centre of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document