Bifurcations, symmetries and the notion of fixed subspace

2021 ◽  
pp. 2130006
Author(s):  
Giampaolo Cicogna

In the context of stationary bifurcation problems admitting a symmetry, this paper is focused on the key notion of Fixed Subspace (FS), and provides a review of some applications aimed at detecting bifurcating solutions in various situations. We start recalling, in its commonly used simplified version, the old Equivariant Bifurcation Lemma (EBL), where the FS is one-dimensional; then we provide a first generalization in a typical case of non-semisimple critical eigenvalues, where the presence of the symmetry produces a non-trivial situation. Next, we consider the case of FSs of dimension [Formula: see text] in very different contexts. First, relying on the topological index theory and in particular on the Krasnosel’skii theorem, we provide a largely applicable statement of an extension of the EBL. Second, we propose a completely different and new application which combines symmetry properties with the notion of stability of bifurcating solutions. We also provide some simple examples, constructed ad hoc to illustrate the various situations.

Author(s):  
Frank S. Levin

Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.


2021 ◽  
pp. 108128652110238
Author(s):  
Barış Erbaş ◽  
Julius Kaplunov ◽  
Isaac Elishakoff

A two-dimensional mixed problem for a thin elastic strip resting on a Winkler foundation is considered within the framework of plane stress setup. The relative stiffness of the foundation is supposed to be small to ensure low-frequency vibrations. Asymptotic analysis at a higher order results in a one-dimensional equation of bending motion refining numerous ad hoc developments starting from Timoshenko-type beam equations. Two-term expansions through the foundation stiffness are presented for phase and group velocities, as well as for the critical velocity of a moving load. In addition, the formula for the longitudinal displacements of the beam due to its transverse compression is derived.


2012 ◽  
Vol 217-219 ◽  
pp. 1421-1424 ◽  
Author(s):  
Bao Sheng Zhao ◽  
Di Wu

A refined theory of axisymmetric cylinder in one-dimensional (1D) hexagonal quasicrystals (QCs) is analyzed. Based on elastic theory with 1D hexagonal QCs, the refined theory of axisymmetric cylinder is derived by using general solution of 1D hexagonal QCs and Lur’e method without ad hoc assumptions. At first, expressions were obtained for all the phonon and phason displacements and stress components in term of the three functions with single independent variable. Based on the boundary conditions, the refined equation for the cylinder is derived directly. And the approximate equation is accurate up to the second-order terms with respect to radius of circular cylinder.


1989 ◽  
Vol 67 (9) ◽  
pp. 896-903 ◽  
Author(s):  
Lorenzo Resca

We show that a one-dimensional analytical study allows us to test and clarify the derivation, assumptions, and symmetry properties of the intervalley effective mass equation (IVEME). In particular, we show that the IVEME is consistent with a two-band case, and is in fact exact for a model that satisfies exactly all its assumptions. On the other hand, an alternative formulation in k-space that includes intervalley kinetic energy terms is consistent with a one-band case, provided that intra-valley kinetic energy terms are also calculated consistent with one band. We also show that the standard symmetry assumptions for both real space and k-space formulations are not actually exact, but are consistent with a "total symmetric" projection, or with taking spherical averages in a three-dimensional case.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1036
Author(s):  
Paolo De Gregorio

We review two well-known definitions present in the literature, which are used to define the heat or energy flux in one dimensional chains. One definition equates the energy variation per particle to a discretized flux difference, which we here show it also corresponds to the flux of energy in the zero wavenumber limit in Fourier space, concurrently providing a general formula valid for all wavelengths. The other relies somewhat elaborately on a definition of the flux, which is a function of every coordinate in the line. We try to shed further light on their significance by introducing a novel integral operator, acting over movable boundaries represented by the neighboring particles’ positions, or some combinations thereof. By specializing to the case of chains with the particles’ order conserved, we show that the first definition corresponds to applying the differential continuity-equation operator after the application of the integral operator. Conversely, the second definition corresponds to applying the introduced integral operator to the energy flux. It is, therefore, an integral quantity and not a local quantity. More worryingly, it does not satisfy in any obvious way an equation of continuity. We show that in stationary states, the first definition is resilient to several formally legitimate modifications of the (models of) energy density distribution, while the second is not. On the other hand, it seems peculiar that this integral definition appears to capture a transport contribution, which may be called of convective nature, which is altogether missed by the former definition. In an attempt to connect the dots, we propose that the locally integrated flux divided by the inter-particle distance is a good measure of the energy flux. We show that the proposition can be explicitly constructed analytically by an ad hoc modification of the chosen model for the energy density.


1992 ◽  
Vol 35 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Ali Lari-Lavassani ◽  
Yung-Chen Lu

AbstractIn their book Singularities and Groups in Bifurcation Theory M. Golubitsky, I. Stewart and D. Schaeffer have introduced an equivariant version of Martinet's notion of V (for variety)-equivalence with parameter. In this paper we give a unified proof that, in this context, infinitesimal stability is equivalent to stability at the local level of germs and that stability in the unfolding category is equivalent to versality.


Sign in / Sign up

Export Citation Format

Share Document