scholarly journals ALMA detection of the dusty object silhouetted against the S0 galaxy NGC 3269 in the Antlia cluster

2021 ◽  
Vol 645 ◽  
pp. A36
Author(s):  
L. K. Haikala ◽  
R. Salinas ◽  
T. Richtler ◽  
M. Gómez ◽  
G. F. Gahm ◽  
...  

Context. An intriguing silhouette of a small dust patch can be seen against the disk of the S0 galaxy NGC 3269 in the Antlia cluster in optical images. The images do not provide any clue as to whether the patch is a local Jupiter mass-scale cloudlet or a large extragalactic dust complex. Aims. We aim to resolve the nature of this object: is it a small Galactic cloudlet or an extragalactic dust complex? Methods. ALMA and APEX spectroscopy and Gemini GMOS long-slit spectroscopy were used to measure the velocity of the patch and the NGC 3269 disk radial velocity curve. Results. A weak 16  ±  2.5 km s−1 wide 12CO(2 − 1) TMB 19  ±  2.5. mK line in a 2.″2 by 2.″12 beam associated with the object was detected with ALMA. The observed heliocentric velocity, Vr, hel = 3878  ±  5.0 km s−1, immediately establishes the extragalactic nature of the object. The patch velocity is consistent with the velocity of the nucleus of NGC 3269, but not with the radial velocity of the NGC 3269 disk of the galaxy at its position. The ∼4″ angular size of the patch corresponds to a linear size of ∼1 kpc at the galaxy’s Hubble distance of 50.7 Mpc. The mass estimated from the 12CO(2 − 1) emission is ∼1.4 × 106(d/50.7 Mpc)2 M⊙, while the attenuation derived from the optical spectrum implies a dust mass of ∼2.6 × 104(d/50.7 Mpc)2 M⊙. The derived attenuation ratio A′B/(A′B − A′R) of 1.6  ±  0.11 is substantially lower than the corresponding value for the mean Milky Way extinction curve for point sources (2.3). Conclusions. We established the extragalactic nature of the patch, but its origin remains elusive. One possibility is that the dust patch is left over from the removal of interstellar matter in NGC 3269 through the interaction with its neighbour, NGC 3268.

2019 ◽  
Vol 632 ◽  
pp. A103
Author(s):  
H. Ernandes ◽  
B. Dias ◽  
B. Barbuy ◽  
S. Kamann ◽  
S. Ortolani ◽  
...  

Context. Moderately metal-poor inner bulge globular clusters are relics of a generation of long-lived stars that formed in the early Galaxy. Terzan 9, projected at 4°.12 from the Galactic center, is among the most central globular clusters in the Milky Way, showing an orbit which remains confined to the inner 1 kpc. Aims. Our aim is the derivation of the cluster’s metallicity, together with an accurate measurement of the mean radial velocity. In the literature, metallicities in the range between −2.0 <  [Fe/H] <  −1.0 have been estimated for Terzan 9 based on color-magnitude diagrams and CaII triplet (CaT) lines. Methods. Given its compactness, Terzan 9 was observed using the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope. The extraction of spectra from several hundreds of individual stars allowed us to derive their radial velocities, metallicities, and [Mg/Fe]. The spectra obtained with MUSE were analysed through full spectrum fitting using the ETOILE code. Results. We obtained a mean metallicity of [Fe/H] ≈ −1.10 ±0.15, a heliocentric radial velocity of vhr = 58.1 ± 1.1 km s−1, and a magnesium-to-iron [Mg/Fe] = 0.27 ± 0.03. The metallicity-derived character of Terzan 9 sets it among the family of the moderately metal-poor Blue Horizontal Branch clusters HP 1, NGC 6558, and NGC 6522.


2016 ◽  
Vol 25 (1) ◽  
Author(s):  
O. V. Maryeva ◽  
E. L. Chentsov ◽  
V. P. Goranskij ◽  
S. V. Karpov

AbstractThe Cyg OB2 stellar association hosts an entire zoo of unique objects, and among them – an enigmatic star Cyg OB2 No. 12 (Schulte 12, MT 304). MT 304 is enigmatic not only due to its highest luminosity (according to various estimates, it is one of the brightest stars in the Galaxy), but also because its reddening is anomalously large, greater than the mean reddening in the association. To explain the nature of anomalous reddening (


2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


1991 ◽  
Vol 144 ◽  
pp. 121-130
Author(s):  
J. Brand ◽  
J.G.A. Wouterloot

In the outer Galaxy (defined here as those parts of our system with galactocentric radii R>R0) the HI gas density (Wouterloot et al., 1990), the cosmic ray flux (Bloemen et al, 1984) and the metallicity (Shaver et al., 1983) are lower than in the inner parts. Also, the effect of a spiral density wave is much reduced in the outer parts of the Galaxy due to corotation. This changing environment might be expected to have its influence on the formation of molecular clouds and on star formation within them. In fact, some differences with respect to the inner Galaxy have been found: the ratio of HI to H2 surface density is increasing from about 5 near the Sun to about 100 at R≈20kpc (Wouterloot et al., 1990). Because of the “flaring” of the gaseous disk, the scale height of both the atomic and the molecular gas increases by about a factor of 3 between R0 and 2R0 (Wouterloot et al., 1990), so the mean volume density of both constituents decreases even more rapidly than their surface densities. The size of HII regions decreases significantly with increasing galactocentric distance (Fich and Blitz, 1984), probably due to the fact that outer Galaxy clouds are less massive (see section 3.3), and therefore form fewer O-type stars than their inner Galaxy counter parts. There are indications that the cloud kinetic temperature is lower by a few degrees (Mead and Kutner, 1988), although it is not clear to what extent this is caused by beam dilution.


1982 ◽  
Vol 70 ◽  
pp. 161-164
Author(s):  
G. Muratorio ◽  
M. Friedjung

Two coudé spectra of V1016 Cyg taken on June 24 and 27, 1979 were reduced, using a computer programme developed in Marseille. Radial velocities and full widths at half maximum were measured for the emission lines, and are summarized in the following table were VR is the mean radial velocity in km s-1, DV the velocity corresponding to the mean FWHM and Xi the effective ionization potential for the ion.


1988 ◽  
Vol 126 ◽  
pp. 659-660
Author(s):  
J. Grindlay ◽  
C. Bailyn ◽  
R. Mathieu ◽  
D. Latham

We report MMT Echelle radial velocity observations of 52 giants within 3 core radii of the center of NGC 6712. The mean radial velocity of these stars is −107.5 km/s, with a line of sight velocity dispersion of 4.0 km/s. We use these data, together with CCD photometry of the cluster, to derive a mass to light ratio for the center of the cluster of 0.7, an unusually low value.


2019 ◽  
Vol 627 ◽  
pp. A113 ◽  
Author(s):  
Martin G. H. Krause ◽  
Martin J. Hardcastle ◽  
Stanislav S. Shabala

Context. Gaseous halos play a key role in understanding inflow, feedback, and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains, and hydrostatic halos at certain galaxy masses. Since luminosities of radio AGN are sensitive to halo densities, any significant transition would be expected to show up in the radio luminosities of large samples of galaxies. The LOw Frequency ARray (LOFAR) Two-Metre Sky Survey (LoTSS) has identified a galaxy stellar mass scale, 1011 M⊙, above which the radio luminosities increase disproportionately. Aims. We investigate if radio luminosities of galaxies, especially the marked rise at galaxy masses around 1011 M⊙, can be explained with standard assumptions regarding jet powers, scaling between black hole mass and galaxy mass, and gaseous halos. Methods. Based on observational data and theoretical constraints, we developed models for the radio luminosity of radio AGN in halos under infall, galactic wind, and hydrostatic conditions. We compared these models to LoTSS data for a large sample of galaxies in the mass range between 108.5 M⊙ and 1012 M⊙. Results. Under the assumption that the same characteristic upper limit to jet powers known from high galaxy masses holds at all masses, we find the maximum radio luminosities for the hydrostatic gas halos to lie close to the upper envelope of the distribution of the LOFAR data. The marked rise in radio luminosity at 1011 M⊙ is matched in our model and is related to a significant change in halo gas density around this galaxy mass, which is a consequence of lower cooling rates at a higher virial temperature. Wind and infall models overpredict the radio luminosities for small galaxy masses and have no particular steepening of the run of the radio luminosities predicted at any galaxy mass. Conclusions. Radio AGN could have the same characteristic Eddington-scaled upper limit to jet powers in galaxies of all masses in the sample if the galaxies have hydrostatic gas halos in phases when radio AGN are active. We find no evidence of a change of the type of galaxy halo with the galaxy mass. Galactic winds and quasi-spherical cosmological inflow phases cannot frequently occur at the same time as powerful jet episodes unless the jet properties in these phases are significantly different from what we assumed in our model.


1985 ◽  
Vol 82 ◽  
pp. 223-224
Author(s):  
N. Visvanathan

AbstractThe mean phase magnitudes at the IV waveband (1.05 micron) of thirteen Cepheids in the SMC and the LMC and nine Cepheids in groups and clusters in the Galaxy, are used in conjunction with periods, to construct P–L(IV) relations in these galaxies. The slopes and the dispersions of the relations are nearly the same. We derive a distance modulus of 19.11±0.07 for the SMC and 18.82±0.07 for the LMC.


2020 ◽  
Vol 497 (4) ◽  
pp. 4162-4182 ◽  
Author(s):  
Eugene Vasiliev ◽  
Vasily Belokurov

ABSTRACT We use the astrometric and photometric data from Gaia Data Release 2 and line-of-sight velocities from various other surveys to study the 3D structure and kinematics of the Sagittarius dwarf galaxy. The combination of photometric and astrometric data makes it possible to obtain a very clean separation of Sgr member stars from the Milky Way foreground; our final catalogue contains 2.6 × 105 candidate members with magnitudes G &lt; 18, more than half of them being red clump stars. We construct and analyse maps of the mean proper motion and its dispersion over the region ∼30 × 12 deg, which show a number of interesting features. The intrinsic 3D density distribution (orientation, thickness) is strongly constrained by kinematics; we find that the remnant is a prolate structure with the major axis pointing at ∼45° from the orbital velocity and extending up to ∼5 kpc, where it transitions into the stream. We perform a large suite of N-body simulations of a disrupting Sgr galaxy as it orbits the Milky Way over the past 2.5 Gyr, which are tailored to reproduce the observed properties of the remnant (not the stream). The richness of available constraints means that only a narrow range of parameters produce a final state consistent with observations. The total mass of the remnant is $\sim \!4\times 10^8\, \mathrm{M}_\odot$, of which roughly a quarter resides in stars. The galaxy is significantly out of equilibrium, and even its central density is below the limit required to withstand tidal forces. We conclude that the Sgr galaxy will likely be disrupted over the next Gyr.


1984 ◽  
Vol 88 ◽  
pp. 375-380
Author(s):  
M. Imbert ◽  
J. Andersen ◽  
A. Ardeberg ◽  
C. Bardin ◽  
W. Benz ◽  
...  

Radii and luminosities for Cepheid variables provide fundamental information on stellar evolution. Such data, obtained by the Baade-Wesselink method, are available and have been used for a number of galactic Cepheids. It is of particular interest to obtain corresponding data for Cepheids in the Magellanic Clouds. Firstly, this allows a comparative study of stellar evolution between the Galaxy and the Magellanic Clouds. Secondly, it provides data for an independent determination of the distance to the Magellanic Clouds.Radial-velocity observations have been made for a total of around 20 Cepheid variables in both the LMC and the SMC. All measurements were made with the photoelectric scanner CORAVEL attached to the Cassegrain focus of the Danish 1.54-m telescope at European Southern Observatory, La Silla, Chile. Observations were made from January 1981 through October 1983. The accuracy of individual radial-velocity observations is of the order of 1 km s−1. The B magnitudes of the six Cepheids presented range from 13.0 to 15.5.


Sign in / Sign up

Export Citation Format

Share Document