scholarly journals Impact of survey geometry and super-sample covariance on future photometric galaxy surveys

Author(s):  
S. Gouyou Beauchamps ◽  
F. Lacasa ◽  
I. Tutusaus ◽  
M. Aubert ◽  
P. Baratta ◽  
...  
2018 ◽  
Vol 611 ◽  
pp. A83 ◽  
Author(s):  
Fabien Lacasa ◽  
Marcos Lima ◽  
Michel Aguena

Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30–35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.


2020 ◽  
Vol 634 ◽  
pp. A74 ◽  
Author(s):  
Fabien Lacasa

As galaxy surveys improve their precision thanks to lower levels of noise and the push toward small, non-linear scales, the need for accurate covariances beyond the classical Gaussian formula becomes more acute. Here I investigate the analytical implementation and impact of non-Gaussian covariance terms that I had previously derived for the galaxy angular power spectrum. Braiding covariance is such an interesting class of such terms and it gets contributions both from in-survey and super-survey modes, the latter proving difficult to calibrate through simulations. I present an approximation for braiding covariance which speeds up the process of numerical computation. I show that including braiding covariance is a necessary condition for including other non-Gaussian terms, namely the in-survey 2-, 3-, and 4-halo covariance. Indeed these terms yield incorrect covariance matrices with negative eigenvalues if considered on their own. I then move to quantify the impact on parameter constraints, with forecasts for a survey with Euclid-like galaxy density and angular scales. Compared with the Gaussian case, braiding and in-survey covariances significantly increase the error bars on cosmological parameters, in particular by 50% for the dark energy equation of state w. The error bars on the halo occupation distribution (HOD) parameters are also affected between 12% and 39%. Accounting for super-sample covariance (SSC) also increases parameter errors, by 90% for w and between 7% and 64% for HOD. In total, non-Gaussianity increases the error bar on w by 120% (between 15% and 80% for other cosmological parameters) and the error bars on HOD parameters between 17% and 85%. Accounting for the 1-halo trispectrum term on top of SSC, as has been done in some current analyses, is not sufficient for capturing the full non-Gaussian impact: braiding and the rest of in-survey covariance have to be accounted for. Finally, I discuss why the inclusion of non-Gaussianity generally eases up parameter degeneracies, making cosmological constraints more robust for astrophysical uncertainties. I released publicly the data and a Python notebook reproducing the results and plots of the article.


2020 ◽  
Vol 15 (S359) ◽  
pp. 391-395
Author(s):  
Sebastian F. Sánchez ◽  
Carlos Lopez Cobá

AbstractWe summarize here some of the results reviewed recently by Sanchez (2020) comprising the advances in the comprehension of galaxies in the nearby universe based on integral field spectroscopic galaxy surveys. In particular we explore the bimodal distribution of galaxies in terms of the properties of their ionized gas, showing the connection between the star-formation (quenching) process with the presence (absence) of molecular gas and the star-formation efficiency. We show two galaxy examples that illustrates the well known fact that ionization in galaxies (and the processes that produce it), does not happen monolitically at galactic scales. This highlight the importance to explore the spectroscopic properties of galaxies and the evolutionary processes unveiled by them at different spatial scales, from sub-kpc to galaxy wide.


Author(s):  
Dinghui Wu ◽  
Juan Zhang ◽  
Bo Wang ◽  
Tinglong Pan

Traditional static threshold–based state analysis methods can be applied to specific signal-to-noise ratio situations but may present poor performance in the presence of large sizes and complexity of power system. In this article, an improved maximum eigenvalue sample covariance matrix algorithm is proposed, where a Marchenko–Pastur law–based dynamic threshold is introduced by taking all the eigenvalues exceeding the supremum into account for different signal-to-noise ratio situations, to improve the calculation efficiency and widen the application fields of existing methods. The comparison analysis based on IEEE 39-Bus system shows that the proposed algorithm outperforms the existing solutions in terms of calculation speed, anti-interference ability, and universality to different signal-to-noise ratio situations.


Sign in / Sign up

Export Citation Format

Share Document