scholarly journals Modeling far-infrared line emission from the HII region S125

2003 ◽  
Vol 406 (1) ◽  
pp. 155-164 ◽  
Author(s):  
P. A. Aannestad ◽  
R. J. Emery
2017 ◽  
Vol 608 ◽  
pp. A144 ◽  
Author(s):  
C. Yang ◽  
A. Omont ◽  
A. Beelen ◽  
Y. Gao ◽  
P. van der Werf ◽  
...  

We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2–1) hereafter) line emission in a sample of redshift ~2–4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2–1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup ~ 5–7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 ~ 102.5–104.1 cm-3 and the kinetic temperature Tk  ~ 20–750 K. The gas thermal pressure Pth ranging from~105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 ~ 102.8–104.6 cm-3 and Tk  ~ 20–30 K, which is less correlated with star formation, and a high-excitation one (nH2 ~ 102.7–104.2 cm-3, Tk  ~ 60–400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2–1) lines follow the tight linear correlation between the luminosities of the [C I](2–1) and the CO(1–0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well. The total mass of the molecular gas reservoir, (1–30) × 1010M⊙, derived based on the CO(3–2) fluxes and αCO(1–0) = 0.8 M⊙ ( K km s-1 pc2)-1, suggests a typical molecular gas depletion time tdep ~ 20–100 Myr and a gas to dust mass ratio δGDR ~ 30–100 with ~20%–60% uncertainty for the SMGs. The ratio between CO line luminosity and the dust mass L′CO/Mdust appears to be slowly increasing with redshift for high-redshift SMGs, which need to be further confirmed by a more complete SMG sample at various redshifts. Finally, through comparing the linewidth of CO and H2O lines, we find that they agree well in almost all our SMGs, confirming that the emitting regions of the CO and H2O lines are co-spatially located.


2017 ◽  
Vol 846 (1) ◽  
pp. 32 ◽  
Author(s):  
T. Díaz-Santos ◽  
L. Armus ◽  
V. Charmandaris ◽  
N. Lu ◽  
S. Stierwalt ◽  
...  

2006 ◽  
Vol 459 (3) ◽  
pp. 821-835 ◽  
Author(s):  
T. Giannini ◽  
C. McCoey ◽  
B. Nisini ◽  
S. Cabrit ◽  
A. Caratti o Garatti ◽  
...  

1992 ◽  
Vol 150 ◽  
pp. 117-119
Author(s):  
S. C. Madden ◽  
N. Geis ◽  
R. Genzel ◽  
F. Herrmann ◽  
A. Poglitsch ◽  
...  

The first observations of the [CII] line toward the nuclei of gas-rich external galaxies, showed that the far-infrared line emission contributes up to 1% of the total luminosity and most likely originates from dense photon-dominated regions (PDRs) associated with the surfaces of molecular clouds exposed to FUV from external or embedded OB stars (Crawford et al. 1985, Lugten et al. 1986, Stacey et al. 1991). We have mapped the [CII] emission toward NGC 6946 over an 8' × 6' (23 × 17 kpc) (Madden et al. 1991) using the Max-Planck Instutute/U.C.Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO).


1989 ◽  
Vol 120 ◽  
pp. 132-133
Author(s):  
R. Rubin ◽  
M. Morris ◽  
E.F. Erickson ◽  
S. Colgan ◽  
J. Simpson

The remarkable filament system seen in radio observations in the vicinity of the galactic center includes two thin filaments which arch away from the galactic plane (E.G. Yusef-Zadem et al 1984). The brightest part of each of these thermal structures is located at GO.10+0.02 and GO.07+0.04. Morris and Yusef-Zadem (1989) reason that photoionization by OB stars is unlikely on geometrical and morphological grounds. They suggest a magnetohydrodynamic mechanism to account for the radio emission and ionization. Erickson et al. (1968) were able to explain most of their observations of the far infrared (FIR) fine structure line emission from these locations in terms of a photoionization model.


1982 ◽  
Vol 4 (4) ◽  
pp. 434-440 ◽  
Author(s):  
J. B. Whiteoak ◽  
Robina E. Otrupcek ◽  
C. J. Rennie

The 4-m radio telescope of the CSIRO Division of Radiophysics at Epping is being used to survey the line emission associated with the 1→0 transition of CO (rest frequency 115.271 GHz) in the southern Milky Way. The programme includes mapping the CO distribution across giant molecular-cloud/HII-region complexes. As a first stage the emission has been observed towards bright southern HII regions. These results will not only serve as a basis for future extensive mapping but will also provide data which is directly comparable with observations of other molecular lines that have been made towards the HII regions.


2014 ◽  
Vol 28 ◽  
pp. 1460198
Author(s):  
J. HAWKES ◽  
G. ROWELL ◽  
B. DAWSON ◽  
F. AHARONIAN ◽  
M. BURTON ◽  
...  

We probe the interstellar medium towards the objects Circinus X-1, a low-mass X-ray binary with relativistic jets; and the highly energetic Westerlund 2 stellar cluster, which is located towards TeV gamma-ray emission and interesting arc- and jet-like features seen in Nanten 12CO data. We have mapped both regions with the Mopra radio telescope, in 7 mm and 12 mm wavebands, looking for evidence of disrupted/dense gas caused by the interaction between high energy outflows and the ISM. Towards Westerlund 2, peaks in CS(J=1-0) emission indicate high density gas towards the middle of the arc and the endpoint of the jet; and radio recombination line emission is seen overlapping the coincident HII region RCW49. Towards Circinus X-1, 12CO(J = 1-0) Nanten data reveals three molecular clouds that lie in the region of Cir X-1. Gas parameters for each cloud are presented here.


1980 ◽  
Vol 241 ◽  
pp. L43 ◽  
Author(s):  
D. M. Watson ◽  
J. W. V. Storey ◽  
C. H. Townes ◽  
E. E. Haller

2019 ◽  
Vol 623 ◽  
pp. A29 ◽  
Author(s):  
N. Falstad ◽  
F. Hallqvist ◽  
S. Aalto ◽  
S. König ◽  
S. Muller ◽  
...  

Context. Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib), which is thought to trace warm and highly enshrouded galaxy nuclei. It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. Aims. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (ultra)luminous infrared galaxies ((U)LIRGs). Methods. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 μm OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. Results. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission have fast and collimated outflows that can be seen in spectral lines at longer wavelengths, including in millimeter emission lines of CO and HCN (in its vibrational ground state) and in radio absorption lines of OH. Conclusions. We conclude that the galaxy nuclei with the highest LHCN − vib/LIR do not drive wide-angle outflows that are detectable using the median velocities of far-infrared OH absorption lines. This is possibly because of an orientation effect in which sources oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.


Sign in / Sign up

Export Citation Format

Share Document