scholarly journals X-ray time lags from a pivoting power law in black holes

2004 ◽  
Vol 414 (3) ◽  
pp. 795-806 ◽  
Author(s):  
E. Körding ◽  
H. Falcke
Keyword(s):  
2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2019 ◽  
Vol 488 (1) ◽  
pp. 324-347 ◽  
Author(s):  
Adam Ingram ◽  
Guglielmo Mastroserio ◽  
Thomas Dauser ◽  
Pieter Hovenkamp ◽  
Michiel van der Klis ◽  
...  

ABSTRACTWe present the publicly available model reltrans that calculates the light-crossing delays and energy shifts experienced by X-ray photons originally emitted close to the black hole when they reflect from the accretion disc and are scattered into our line of sight, accounting for all general relativistic effects. Our model is fast and flexible enough to be simultaneously fit to the observed energy-dependent cross-spectrum for a large range of Fourier frequencies, as well as to the time-averaged spectrum. This not only enables better geometric constraints than only modelling the relativistically broadened reflection features in the time-averaged spectrum, but additionally enables constraints on the mass of supermassive black holes in active galactic nuclei and stellar-mass black holes in X-ray binaries. We include a self-consistently calculated radial profile of the disc ionization parameter and properly account for the effect that the telescope response has on the predicted time lags. We find that a number of previous spectral analyses have measured artificially low source heights due to not accounting for the former effect and that timing analyses have been affected by the latter. In particular, the magnitude of the soft lags in active galactic nuclei may have been underestimated, and the magnitude of lags attributed to thermal reverberation in X-ray binaries may have been overestimated. We fit reltrans to the lag-energy spectrum of the Seyfert galaxy Mrk 335, resulting in a best-fitting black hole mass that is smaller than previous optical reverberation measurements (∼7 million compared with ∼14–26 million M⊙).


2019 ◽  
Vol 489 (2) ◽  
pp. 1957-1972 ◽  
Author(s):  
D R Wilkins

ABSTRACT A framework is developed to perform Fourier-domain timing analysis on X-ray light curves with gaps, employing Gaussian processes to model the probability distribution underlying the observed time series from which continuous samples can be drawn. A technique is developed to measure X-ray reverberation from the inner regions of accretion discs around black holes in the low-frequency components of the variability, on time-scales longer than can be probed employing standard Fourier techniques. This enables X-ray reverberation experiments to be performed using data from satellites in low-Earth orbit such as NICER, NuSTAR, and the proposed X-ray timing mission STROBE-X, and enables long time-scale reverberation around higher mass active galactic nuclei (AGNs) to be measured by combining observations. Gaussian processes are applied to observations of the broad line radio galaxy 3C 120 spanning two orbits with XMM–Newton to measure the relative time lags of successive X-ray energy bands. The lag–energy spectrum between 5 × 10−6 and 3 × 10−5 Hz, estimated using Gaussian processes, reveals X-ray reverberation from the inner accretion disc for the first time in this radio-loud AGN. Time lags in the relativistically broadened iron K line are significantly detected. The core of the line lags behind the continuum by (3800 ± 1500) s, suggesting a scale height of the corona of (13 ± 8) rg above the disc. The ability to compare the structure of coronae in radio-loud AGNs to their radio-quiet counterparts will yield important insight into the mechanisms by which black holes are able to launch jets.


2000 ◽  
Vol 195 ◽  
pp. 387-388
Author(s):  
T. Di Matteo ◽  
S. W. Allen

We discuss the detection of hard, power-law emission components in the X-ray spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite and its implication for low-radiative efficiency accretion models around the central, supermassive black holes.


2020 ◽  
Vol 492 (2) ◽  
pp. 2268-2284 ◽  
Author(s):  
Keir L Birchall ◽  
M G Watson ◽  
J Aird

ABSTRACT In this work we present a robust quantification of X-ray selected AGN in local (z ≤ 0.25) dwarf galaxies ($M_\mathrm{*} \le 3 \times 10^9 \, \mathrm{M_\odot }$). We define a parent sample of 4331 dwarf galaxies found within the footprint of both the MPA-JHU galaxy catalogue (based on SDSS DR8) and 3XMM DR7, performed a careful review of the data to remove misidentifications and produced a sample of 61 dwarf galaxies that exhibit nuclear X-ray activity indicative of an AGN. We examine the optical emission line ratios of our X-ray selected sample and find that optical AGN diagnostics fail to identify 85 per cent of the sources. We then calculated the growth rates of the black holes powering our AGN in terms of their specific accretion rates (∝ LX/M*, an approximate tracer of the Eddington ratio). Within our observed sample, we found a wide range of specific accretion rates. After correcting the observed sample for the varying sensitivity of 3XMM, we found further evidence for a wide range of X-ray luminosities and specific accretion rates, described by a power law. Using this corrected AGN sample we also define an AGN fraction describing their relative incidence within the parent sample. We found the AGN fraction increases with host galaxy mass (up to ≈6 per cent) for galaxies with X-ray luminosities between $10^{39} \, $ and $10^{42} \, \mathrm{erg\, s^{-1}}$, and by extrapolating the power law to higher luminosities, we found evidence to suggest the fraction of luminous AGN ($L_\mathrm{X} \ge 10^{42.4} \, \mathrm{erg\, s^{-1}}$) is constant out to z ≈ 0.7.


2020 ◽  
Vol 493 (4) ◽  
pp. 5532-5550 ◽  
Author(s):  
D R Wilkins ◽  
C S Reynolds ◽  
A C Fabian

ABSTRACT We explore how X-ray reverberation around black holes may reveal the presence of the innermost stable circular orbit (ISCO), predicted by general relativity, and probe the dynamics of the plunging region between the ISCO and the event horizon. Being able to directly detect the presence of the ISCO and probe the dynamics of material plunging through the event horizon represents a unique test of general relativity in the strong field regime. X-ray reverberation off of the accretion disc and material in the plunging region is modelled using general relativistic ray tracing simulations. X-ray reverberation from the plunging region has a minimal effect on the time-averaged X-ray spectrum and the overall lag-energy spectrum, but is manifested in the lag in the highest frequency Fourier components, above $0.01\, c^{3}\, (GM)^{-1}$ (scaled for the mass of the black hole) in the 2–4 keV energy band for a non-spinning black hole or the 1–2 keV energy band for a maximally spinning black hole. The plunging region is distinguished from disc emission not just by the energy shifts characteristic of plunging orbits, but by the rapid increase in ionization of material through the plunging region. Detection requires measurement of time lags to an accuracy of 20 per cent at these frequencies. Improving accuracy to 12 per cent will enable constraints to be placed on the dynamics of material in the plunging region and distinguish plunging orbits from material remaining on stable circular orbits, confirming the existence of the ISCO, a prime discovery space for future X-ray missions.


2006 ◽  
Vol 2 (S238) ◽  
pp. 209-218 ◽  
Author(s):  
Kazuo Makishima

AbstractIncorporating early data from the Suzaku satellite launched in July 2005, properties of Ultra-Luminous compact X-ray sources (ULXs) were studied in close comparison with those of Galactic and Magellanic black-hole binaries. Based on an analogy between these two types of X-ray sources, ULXs showing power-law type spectra are considered to host Comptonized accretion disks, while those with multicolor-disk type spectra are interpreted to harbor “slim” disks. The analogy also suggests that ULXs are radiating near their Eddington limits, and hence their central black holes are significantly more massive than the ordinary stellar-mass black holes contained in Galactic and Magellanic black-hole binaries. In this sense, ULXs can be regarded as intermediate-mass black holes.


1997 ◽  
Vol 159 ◽  
pp. 248-251
Author(s):  
Th. Boile ◽  
W.N. Brandt

AbstractThis paper reports on AGN with extremely soft X-ray spectra observed with ROSAT. From their optical emission lines, these objects are classified as narrow-line Seyfert 1 galaxies (NLSl), almost all with extremely large Fe II/Hβ flux ratios and relatively narrow optical lines of hydrogen. NLSl have generally steeper soft X-ray continuum slopes than normal Seyfert 1s, and there may exist an anticorrelation between 0.1–2.4 keV continuum slope and the FWHM of the Hβ line. Objects with steep 0.1–2.4 keV continuum slopes and Hβ FWHM > 3000 km s−1 are clearly discriminated against by nature. When simple power-law models are fit to the data, photon indices reach values up to about 5, much higher than is usually seen in Seyfert 1s. Models with smaller-mass black holes and/or higher accretion rates show some promise to explain the relation between the FWHM of the Hβ line and the X-ray continuum slope. We further report evidence for persistent giant and rapid variability in the ultrasoft narrow-line Seyfert 1 galaxy IRAS 13224–3809.


2012 ◽  
Vol 8 (S290) ◽  
pp. 3-12
Author(s):  
A. C. Fabian

AbstractMost of the X-ray emission from luminous accreting black holes emerges from within 20 gravitational radii. The effective emission radius is several times smaller if the black hole is rapidly spinning. General Relativistic effects can then be very important. Large spacetime curvature causes strong lightbending and large gravitational redshifts. The hard X-ray, power-law-emitting corona irradiates the accretion disc generating an X-ray reflection component. Atomic features in the reflection spectrum allow gravitational redshifts to be measured. Time delays between observed variations in the power-law and the reflection spectrum (reverberation) enable the physical scale of the reflecting region to be determined. The relative strength of the reflection and power-law continuum depends on light bending. All of these observed effects enable the immediate environment of the black hole where the effects of General Relativity are on display to be probed and explored.


1989 ◽  
Vol 134 ◽  
pp. 197-198
Author(s):  
D. M. Worrall ◽  
B. J. Wilkes

Quasars with similar core-compact radio properties can be classified by their differences at optical and infrared frequencies. Their X-ray properties might be expected to be similar if the synchrotron self-Compton mechanism relates their radio and X-ray emission. We have compared the 0.2–3.5 keV mean power-law energy spectral indices, , for 4 quasar classes: 12 Highly Polarized QSOs (HPQs), 19 Flat Radio Spectrum, core-compact, low-polarization, QSOs (FRS QSOs), 24 radio-selected BL Lac objects, and 7 X-ray-selected BL Lac objects.


Sign in / Sign up

Export Citation Format

Share Document