scholarly journals Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor

2007 ◽  
Vol 471 (1) ◽  
pp. 51-57 ◽  
Author(s):  
A. Boyarsky ◽  
J. Nevalainen ◽  
O. Ruchayskiy
1990 ◽  
Vol 100 ◽  
pp. 127 ◽  
Author(s):  
Carlton Pryor ◽  
John Kormendy

2004 ◽  
Vol 220 ◽  
pp. 365-366
Author(s):  
J. R. Kuhn ◽  
D. Kocevski

A simple and natural explanation for the dynamics and morphology of the Local Group Dwarf Spheroidal galaxies, Draco (Dra) and Ursa Minor (UMi), is that they are weakly unbound stellar systems with no significant dark matter component. A gentle, but persistent, Milky Way (MW) tide has left them in their current kinematic and morphological state (the “parametric tidal excitation”). A new test of a dark matter dominated dS potential follows from a careful observation of the “clumpiness” of the dS stellar surface density.


2019 ◽  
Vol 490 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Manoj Kaplinghat ◽  
Mauro Valli ◽  
Hai-Bo Yu

ABSTRACT We point out an anticorrelation between the central dark matter (DM) densities of the bright Milky Way dwarf spheroidal galaxies (dSphs) and their orbital pericenter distances inferred from Gaia data. The dSphs that have not come close to the Milky Way centre (like Fornax, Carina and Sextans) are less dense in DM than those that have come closer (like Draco and Ursa Minor). The same anticorrelation cannot be inferred for the ultrafaint dSphs due to large scatter, while a trend that dSphs with more extended stellar distributions tend to have lower DM densities emerges with ultrafaints. We discuss how these inferences constrain proposed solutions to the Milky Way’s too-big-to-fail problem and provide new clues to decipher the nature of DM.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Beth Willman

The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.


2009 ◽  
Vol 24 (29) ◽  
pp. 2291-2305 ◽  
Author(s):  
MARCEL ZEMP

We review results from recent high resolution cosmological structure formation simulations, namely the Via Lactea I & II and GHALO projects. These simulations study the formation of Milky Way sized objects within a cosmological framework. We discuss the general properties of cold dark matter halos at redshift z = 0 and focus on new insights into the structure of halos we got due to the unprecedented high resolution in these simulations.


2005 ◽  
Vol 22 (3) ◽  
pp. 190-194 ◽  
Author(s):  
Geraint F. Lewis ◽  
Rodrigo A. Ibata

AbstractCold dark matter cosmologies successfully accounts for the distribution of matter on large scales. On smaller scales, these cosmological models predict that galaxies like our own Milky Way should be enveloped in massive dark matter halos. Furthermore, these halos should be significantly flattened or even triaxial. Recent observational evidence, drawn from the demise of the Sagittarius dwarf galaxy as it is cannibalized by our own, indicates that the potential of the Milky Way must be close to spherical. While the precise interpretation of the observational evidence is under debate, an apparently spherical halo may signify a pronounced failing of dark matter models, and may even indicate a failure in our fundamental understanding of gravity.


2017 ◽  
Vol 13 (S334) ◽  
pp. 349-350
Author(s):  
Go Ogiya

AbstractThe Milky Way (MW) is interacting with its satellite galaxies and the tidal remnants of satellite galaxies have been observed especially in the MW halo. Understanding the spatial and velocity distributions of stars stripped from satellite galaxies will be of particular importance when interpreting the data from upcoming observations, such as Gaia, Subaru-HSC and PFS. We study tidal stripping events of satellite galaxies with various internal structures using high resolution N-body simulations. The dynamics of satellite galaxies is dominated by dark matter halos, but their density structure is still uncertain. The simulations reveal satellite galaxies with more tightly bound dark matter halos are more robust against the tidal force of the MW and have longer lifetimes than loosely bound ones (Ogiya et al., in prep.). Density scratches on the MW caused by the gravitational force of satellite galaxies and the observability are also discussed (Ogiya & Burkert 2016).


2014 ◽  
Vol 11 (S308) ◽  
pp. 416-419
Author(s):  
Tomoaki Ishiyama

AbstractThe smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ ∝ r−(1.5−1.3). We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately -1.3. The concentration parameter is nearly independent of halo mass, and ruling out simple power law mass-concentration relations. The steeper inner cusps of halos near the free streaming scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.


2008 ◽  
Vol 4 (S254) ◽  
pp. 85-94
Author(s):  
James S. Bullock ◽  
Kyle R. Stewart ◽  
Chris W. Purcell

AbstractDisk galaxies are common in our universe and this is a source of concern for hierarchical formation models like ΛCDM. Here we investigate this issue as motivated by raw merger statistics derived for galaxy-size dark matter halos from ΛCDM simulations. Our analysis shows that a majority (~ 70%) of galaxy halos with M0 = 1012M⊙ at z = 0 should have accreted at least one object with mass m > 1011M⊙ ≃ 3 Mdisk over the last 10 Gyr. Mergers involving larger objects m ≳ 3 × 1011M⊙ should have been very rare for Milky-Way size halos today, and this pinpoints m/M ~ 0.1 mass-ratio mergers as the most worrying ones for the survival of thin galactic disks. Motivated by these results, we use use high-resolution, dissipationless N-body simulations to study the response of stellar Milky-Way type disks to these common mergers and show that thin disks do not survive the bombardment. The remnant galaxies are roughly three times as thick and twice as kinematically hot as the observed thin disk of the Milky Way. Finally, we evaluate the suggestion that disks may be preserved if the mergers involve gas-rich progenitors. Using empirical measures to assign stellar masses and gas masses to dark matter halos as a function of redshift, we show that the vast majority of large mergers experienced by 1012M⊙ halos should be gas-rich (fgas > 0.5), suggesting that this is a potentially viable solution to the disk formation conundrum. Moreover, gas-rich mergers should become increasingly rare in more massive halos > 1012.5M⊙, and this suggest that merger gas fractions may play an important role in establishing morphological trends with galaxy luminosity.


Sign in / Sign up

Export Citation Format

Share Document