Appendix J Young’s Modulus of the Space Time from the Energy Density of the Gravitational Wave

2021 ◽  
pp. 309-316
2018 ◽  
Vol 97 (10) ◽  
Author(s):  
Margot Phelps ◽  
Anna-Maria van Veggel ◽  
James Hough ◽  
Chris Messenger ◽  
David Hughes ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Pu Yuan ◽  
Ning-Ning Wei ◽  
Qin-Yong Ma

To evaluate the effect of nonparallel end face of rocklike specimens in SHPB tests, the characteristics of energy dissipation are analyzed based on numerical simulations for end-face nonparallelism from 0% to 0.40% and Young’s modulus from 14 GPa to 42 GPa. With the increment of end-face nonparallelism, both energy consumption density and dissipated energy density show a slight increase trend, while releasable elastic strain energy density presents a slight decrease trend. Existence of elastic unloading in the damaged rocklike specimen leads to a reduction of energy consumption density and a constant dissipated energy density during total strain shrinkage. At peak dynamic stress, dissipated energy density presents a linear upward trend with the increment of end-face nonparallelism and Young’s modulus, while releasable elastic strain energy density shows an inverse trend. A binary linear regression equation is deduced to estimate the energy dissipation ratio. Mechanical damage evolution of the rocklike specimen is divided into two regions in line with the two regions in dynamic stress-strain curves, and the transition between the slow-growth region and rapid-growth region is shifted to the right with the increment of end-face nonparallelism. Due to the presence of nonparallel end face, fluctuation presents in energy density evolution and mechanical damage evolution. The fluctuation is enhanced with the increment of end-face nonparallelism and weakened with the increase of Young’s modulus. Based on energy density evolution and mechanical damage evolution analyses, the maximum end-face nonparallelism should be controlled within 0.20%, twice the value in ISRM suggested methods, which reduces the cost and time for processing rocklike specimens.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


Sign in / Sign up

Export Citation Format

Share Document