scholarly journals Multistability of saxophone oscillation regimes and its influence on sound production

Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 33
Author(s):  
Tom Colinot ◽  
Christophe Vergez ◽  
Philippe Guillemain ◽  
Jean-Baptiste Doc

The lowest fingerings of the saxophone can lead to several different regimes, depending on the musician’s control and the characteristics of the instrument. This is explored in this paper through a physical model of saxophone. The harmonic balance method shows that for many combinations of musician control parameters, several regimes are stable. Time-domain synthesis is used to show how different regimes can be selected through initial conditions and the initial evolution (rising time) of the blowing pressure, which is explained by studying the attraction basin of each stable regime. These considerations are then applied to study how the produced regimes are affected by properties of the resonator. The inharmonicity between the first two resonances is varied in order to find the value leading to the best suppression of unwanted overblowing. Overlooking multistability in this description can lead to biased conclusions. Results for all the lowest fingerings show that a slightly positive inharmonicity, close to that measured on a saxophone, leads to first register oscillations for the greatest range of control parameters. A perfect harmonicity (integer ratio between the first two resonances) decreases first register production, which adds nuance to one of Benade’s guidelines for understanding sound production. Thus, this study provides some a posteriori insight into empirical design choices relative to the saxophone.

2017 ◽  
Vol 85 ◽  
pp. 716-729 ◽  
Author(s):  
Hamed Haddad Khodaparast ◽  
Hadi Madinei ◽  
Michael I. Friswell ◽  
Sondipon Adhikari ◽  
Simon Coggon ◽  
...  

Author(s):  
Jan Philipp Heners ◽  
Stephan Stotz ◽  
Annette Krosse ◽  
Detlef Korte ◽  
Maximilian Beck ◽  
...  

Unsteady pressure fluctuations measured by fast-response pressure transducers mounted in a low-pressure turbine cascade are compared to unsteady simulation results. Three differing simulation approaches are considered, one time-integration method and two harmonic balance methods either resolving or averaging the time-dependent components within the turbulence model. The observations are used to evaluate the capability of the harmonic balance solver to predict the transient pressure fluctuations acting on the investigated stator surface. Wakes of an upstream rotor are generated by moving cylindrical bars at a prescribed rotational speed that refers to a frequency of f∼500 Hz. The excitation at the rear part of the suction side is essentially driven by the presence of a separation bubble and is therefore highly dependent on the unsteady behavior of turbulence. In order to increase the stability of the investigated harmonic balance solver, a developed Lanczos-type filter method is applied if the turbulence model is considered in an unsteady fashion.


2021 ◽  
Vol 11 (13) ◽  
pp. 6106
Author(s):  
Zhiying Zhang ◽  
Xin Tian ◽  
Xin Ge

The Bouc–Wen nonlinear hysteretic model has many control parameters, which has been widely used in the field of seismic isolation. The isolation layer is the most important part of the isolation system, which can be effectively simulated by the Bouc–Wen model, and the isolation system can reflect different dynamic characteristics under different control parameters. Therefore, this paper mainly studies and analyzes the nonlinear dynamic characteristics of the isolation system under different influence factors based on the incremental harmonic balance method, which can provide the basis for the dynamic design of the isolation system.


Sign in / Sign up

Export Citation Format

Share Document