scholarly journals Comparison between maize inbred lines: genetic distances in the expert's eye

Agronomie ◽  
1998 ◽  
Vol 18 (10) ◽  
pp. 659-667 ◽  
Author(s):  
Christine Dillmann ◽  
Daniel Guérin
Crop Science ◽  
2009 ◽  
Vol 49 (4) ◽  
pp. 1201-1210 ◽  
Author(s):  
Thanda Dhliwayo ◽  
Kevin Pixley ◽  
Abebe Menkir ◽  
Marilyn Warburton

2016 ◽  
Vol 2 (2) ◽  
pp. 45 ◽  
Author(s):  
Marcia Bunga Pabendon ◽  
M. Dahlan ◽  
Sutrisno Sutrisno ◽  
M. L.C. George

<p class="p1">Information on genetic relationships among available crop germplasm such as maize inbred lines, has important implications to breeding programs. A set of 26 maize inbreds togeher with six standard lines from CIMMYT (CML51, CML292, CML202, CML206, CML236, dan CML396), was characterized using 26 SSR markers, which were coverage of the maize genomes. The objective of this study was to analyze genetic diversities among the Indonesian maize inbred collections. Polymorphism Information Content (PIC) value and the observed genetic distance indicated the existence of large variabilities among the inbreds. Cluster analysis based on 27% of the Jaccard’s similarity coefficient placed the inbreds into three groups. Genetic distances among all the possible pairs without the standard maize lines varied from 0.32 (KSX360F2-5-1-3-1v vs KSX2601F2-5-1-1-v) to 0.88 (PT963298-1-B-B-Bv vs Mr13). Cluster and Principal Coordinate Analysis of the genetic distances, revealed a clear differentiation of the inbred lines into groups according to their source populations. This clustering were consistent with those of the known pedigree records of the inbreds based on their morphological characters. These results support the use of morphological traits in the production of maize hybrids. The SSR markers proved to be effective to characterize, identify, and demonstrate genetic similarities among the maize inbred lines.</p>


Euphytica ◽  
2015 ◽  
Vol 204 (3) ◽  
pp. 635-647 ◽  
Author(s):  
Thokozile Ndhlela ◽  
Liezel Herselman ◽  
Kassa Semagn ◽  
Cosmos Magorokosho ◽  
Charles Mutimaamba ◽  
...  

2021 ◽  
Author(s):  
Siphiwokuhle Funani Shandu ◽  
John Derera ◽  
Kingston Mashingaidze ◽  
Edmore Gasura

Abstract An efficient hybrid breeding program defines and utilizes few heterotic groups. The objectives of this study were to determine genetic diversity and alignment of South Africa maize inbred lines collection towards tropical and temperate testers. Forty-two maize inbred lines were genotyped with 56110 single nucleotide polymorphism (SNP) DNA markers, using the Illumina MaizeSNP50 Bead chip. The 42 lines were crossed to two tropical and two temperate inbred line testers. The testcrosses were evaluated across seven environments, in South Africa, during 2014-2016. Genotypes and specific combining ability (SCA) effects of hybrids were significantly different (P<0.05) for grain yield. There was a weak correlation between molecular genetic distances and both grain yield mean and specific combining ability effects of hybrids, indicating that productivity of maize inbred lines could not be reliably determined based on molecular genetic distances. The SCA data was capable of classifying these maize inbred lines into three heterotic groups with respect to both tropical and temperate testers. Only a few lines could not be grouped on the basis of SCA data. The study also indicated high level of diversity among the maize inbred lines, which was shown by both the dendogram and molecular genetic distances. The SNP marker data classified the inbred lines into 11 clusters that could be simplified into three major groups of normal maize endosperm and two groups of quality protein maize (QPM) endosperm types. However, the SNP data indicated that maize lines were more aligned towards tropical than temperate inbred testers. This information would be useful for simplifying heterotic classification of the lines with profound implications for breeding progress.


Author(s):  
Rodica POP ◽  
Ioan HAS ◽  
Iulia Francesca POPESCU ◽  
Monica HARTA ◽  
Doru PAMFIL

Knowledge of genetic diversity and relationships among maize inbred lines is indispensable to a breeding program. Our objective was to investigate the level of genetic diversity among maize inbred lines. Eighty-three maize inbred lines obtained from SCDA Turda were genotyped using 20 decamer primers. These primers generated, among the studied genotypes, a number of polymorphic bands comprised between 17 bands (OPA 03) and 7 bands (OPAB 11). The highest numbers of polymorphic bands were obtained with primer OPA 03, respectively 17 bands, followed by OPA 01, OPB 08 (16 polymorphic bands) and OPX 03 and OPAL 20 (13 polymorphic bands). Genetic distances were established using Nei Li/Dice coefficent and an UPGMA dendrogram was constructed with FreeTree software. The built dendrogram shows phylogenetic relationships between the analysed biological material.


2016 ◽  
Vol 16 (1) ◽  
pp. 50-58
Author(s):  
Georgi Bonchev ◽  
Lydia Shtereva ◽  
Rumiana Vassilevska-Ivanova

AbstractHeterosis is a main force underlying the hybrid seed industry in maize. Our experimental approach consists of a correlation study between retrotransposon-related genetic distances between parental inbred lines and hybrid performance. The assumption is that, at least for certain traits, heterosis results from genome rearrangements, largely related to retrotransposon insertions and/or removals. Fifteen maize inbred lines and one F1 hybrid, representative of the genetic diversity among sweet corn and field corn lines were screened for polymorphism by retrotransposon microsatellite amplified polymorphism markers. DNA fingerprints served as row data for estimating genetic diversity of maize inbred lines and its correlation with the heterotic effect in their hybrids. A correlation between phenotypic and molecular distances was evident only at the level of individual inbred lines. Weak correlation between genetic distances and heterosis effect was observed for the average of all inbred lines. Phenotypic distances negatively correlated with heterosis for insertion height, diameter of the ear and number of kernel rows per ear. The relative contribution of each inbred line to heterosis in its derived hybrids was also estimated. Accordingly, we identified inbred lines with increased genetic distances that mostly add to the heterosis effect in their hybrids and that we recommend as prospective to be used in maize breeding programmes.


2014 ◽  
Vol 40 (5) ◽  
pp. 838 ◽  
Author(s):  
Chao CUI ◽  
Ju-Lin GAO ◽  
Xiao-Fang YU ◽  
Zhi-Jun SU ◽  
Zhi-Gang WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document