scholarly journals Palm Oil Mill Effluent (POME) utilization for bio-hydrogen production targeting for biofuel : optimization and scale up

2018 ◽  
Vol 67 ◽  
pp. 02003
Author(s):  
Joni Prasetyo ◽  
S.D. Sumbogo Murti ◽  
Semuel Pati Senda ◽  
Andi Djalal Latief ◽  
R. Dwi Husodo Prasetyo ◽  
...  

Indonesia is the largest palm plantation that reaches 32 million tonnes palm oil production per year with 84 million tones Palm Oil Mill Effluent (POME) as liquid waste. POME contains many organic substances. The quality of POME for its utilization is generally measured in COD which has range 30000 -100.000 ppm. Microbial convertion for biogas especially for bio-H2 enrichment, the active sludge was pretreated physically to suppress methanogenesis microbes. H2 Biogas production was conducted at pH 5-6. Additional 10% phosphate buffer was done in the beginning only. The production of H2 biogas was influenced by hydrostatic pressure in closed batch system. Inoculumsmedium ratio also influenced the H2 biogas productivity, reached 0.7 ml/ml POME with more than 50% H2. Scaling up anaerobic in 2.5 L working volume bioreactor, H2 biogas productivity reached 0.86 ml/ml POME by 10% inoculums because of no hydrostatic pressure. In bio-reactor, H2-CO2 in H2 biogas was affected by the amount of active sludge. In the beginning of H2 biogas, H2 reached 80%. However, at subsequence process, fed batch, with retention time 2.5 day and 3 days H2 biogas production, the active sludge was accumulated and caused the decreasing H2, finally only 46% at the 3rd day. The consortium tended to produce more CO2 as the result of primary metabolite rather than H2. Raising inoculums to level 15% improved productivity only in the beginning but H2 content was getting less, only 59%. Additional feeding would cause more accumulation sludge and more decreasing H2 content to 31% on the 3rd day. Thus, the ratio of active sludge and substrate availability must be controlled to gain optimum H2. Limited substrate will cause the direction of bio-conversion more in CO2 rather than H2.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2473 ◽  
Author(s):  
Muhammad Arif Fikri Hamzah ◽  
Jamaliah Md Jahim ◽  
Peer Mohamed Abdul ◽  
Ahmad Jaril Asis

Malaysia is one of the largest palm oil producers worldwide and its most abundant waste, palm oil mill effluent (POME), can be used as a feedstock to produce methane. Anaerobic digestion is ideal for treating POME in methane production due to its tolerance to high-strength chemical oxygen demand (COD). In this work, we compared the culture conditions during the start-up of anaerobic digestion of acidified POME between thermophilic (55 °C) and mesophilic (37 °C) temperatures. The pH of the digester was maintained throughout the experiment at 7.30 ± 0.2 in a working volume of 1000 mL. This study revealed that the thermophilic temperature stabilized faster on the 44th day compared to the 52nd day for the mesophilic temperature. Furthermore, the thermophilic temperature indicated higher biogas production at 0.60 L- CH 4 /L·d compared to the mesophilic temperature at 0.26 L- CH 4 /L·d. Results from this study were consistent with the COD removal of thermophilic temperature which was also higher than the mesophilic temperature.


2019 ◽  
Vol 8 (1) ◽  
pp. 14-21
Author(s):  
Sri Ismiyati Damayanti ◽  
Dian Fitriani Astiti ◽  
Chandra Wahyu Purnomo ◽  
Sarto Sarto ◽  
Wiratni Budhijanto

Two-stage anaerobic fluidized bed is an innovation in anaerobic digestion technology intended to handle liquid waste with high organic loading and complex substrate. The process is based on separation between acidogenic/acetogenic and methanogenic processes. The first stage is anaerobic process to convert substrate (represented as soluble chemical oxygen demand/sCOD) into volatile fatty acids (VFA). The second stage is methanogenic process to convert VFA into biogas. This study aimed to separate acidogenic/acetogenic and methanogenic processes by means of limited injection of air (micro-aeration) and inoculum selection. Micro-aeration was introduced in acidogenic/acetogenic stage because the relevant microbes were facultative so that the obligate anaerobic methanogens will be suppressed. On the other hand, the methanogenic reactor was kept completely anaerobic to ensure methanogenic dominance over acidogenic/acetogenic ones. Two sources of inoculums were used in this study, i.e. anaerobically digested biodiesel waste and anaerobically digested cow manure. Both inoculums were taken from active biogas reactor treating biodiesel waste and cow manure, respectively. Experiments were run in batch reactors treating palm oil mill effluent (POME) as the substrate for the acidogenic/acetogenic reactor. After the reaction in the first stage reached the minimum substrate concentration, the content of the reactor was used as the substrate for the methanogenic reactor as the second stage. Routine measurements were taken for sCOD and VFA concentrations, biogas production, and methane concentration in the biogas. Results confirmed that micro-aeration maintained good performance of acidogenic/acetogenic process, which was indicated by peaks in VFA accumulation, while suppressing methanogenic activities as no methane produced in this stage. Digested biodiesel waste was superior inoculum to be compared to digested cow manure with respect to sCOD removal. In the methanogenic stage, digested biodiesel waste also performed better as inoculum as it led to higher VFA conversion, higher biogas production rate, and higher methane content in the biogas. 


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Annop ◽  
P. Sridang ◽  
P. Chevakidagarn ◽  
K. Nopthavorn

The main objective was to compare the performances and the removal efficiencies of two biological treatment systems, a submerged membrane bioreactor (SMBR) and a simultaneous activated sludge (AS), for treating Palm Oil Mill Effluent (POME). Two lab scale units of SMBR and AS with a working volume of 24 L were operated under favorable biological conditions and minimized membrane fouling intensity. To achieve both carbonaceous and nitrogen removal, the cyclic air intermittent and dissolved oxygen control were performed into SMBR and AS with the influent flow rate about 16 L/d respectively. In terms of organic removal and membrane performance, the SMBR showed good removal efficiency to treat high strength wastewater with organic loading variation of POME. The average removal rates of TCOD, BOD, Turbidity, Color, Oil and Grease, NH3–N, TKN were 69±2, 76±2, 100±1, 37±21, 92±6, 67±4 and 75±10% respectively. Results pointed out the benefit of membranes retained totally the active compositions of biomass in each stage of development. The AS showed the limitation of sedimentation phase for sludge and oil separation. The characteristics of sludge in SMBR showed healthy floc formations and good settling after 240 h. The concentrations of COD and BOD in permeate were around 870±53 and 37±13 mg/L.


2020 ◽  
Vol 13 (02) ◽  
pp. 164
Author(s):  
Untung Sudadi ◽  
Syaiful Anwar ◽  
Rendy Anggriawan ◽  
Tengku Afrizal

Land application of liquid waste containing palm oil mill effluent (LW-POME) as soil ameliorant can cause water contamination due to its high content of nitrate if improperly treated. Indonesia is rich with volcanic tuff materials that contain variable charged soil clay minerals. This study was aimed at to extract nanoclays (fraction sized <200 nm) from volcanic tuffs of Mt. Salak, West Java, Indonesia, and evaluate their potential use as adsorbent of nitrate in LW-POME. By applying dispersion, ultrasonication, centrifugation, and dialysis separation techniques, it could be extracted positively charged nanoclays nc3 and nc4 from the respectively tuff materials tv3 and tv4. Their potential use as natural adsorbent of nitrate as anionic contaminant was evaluated using Langmuir isothermal adsorption model. After 48 h equilibration, it could be extracted 4.33 mg nc3/g tv3 and 7.73 mg nc4/g tv4 with nitrate adsorption maxima of 48.3 and 40 mg/g for nc3 and nc4, respectively. The removal of nitrate in the LW-POME from 62 to 20 mg/L as to comply with the Indonesian liquid waste quality standard required 29.81 mg nc3/L or 39.34 mg nc4/L. The extracted nanoclays were considered prospective to be utilized as natural adsorbent for nitrate removal in LW-POME. Keywords: anionic contaminant, natural adsorbent, nitrate adsorption, volcanic tuff


2020 ◽  
Vol 706 ◽  
pp. 136095 ◽  
Author(s):  
B.K. Zaied ◽  
Mohd Nasrullah ◽  
Md. Nurul Islam Siddique ◽  
A.W. Zularisam ◽  
Lakhveer Singh ◽  
...  

2018 ◽  
Vol 1116 ◽  
pp. 042015 ◽  
Author(s):  
Irvan ◽  
T Husaini ◽  
E Simanungkalit ◽  
R Sidabutar ◽  
B Trisakti

1985 ◽  
Vol 17 (2-3) ◽  
pp. 155-166 ◽  
Author(s):  
A. Ibrahim ◽  
B. G. Yeoh ◽  
S. C. Cheah ◽  
A. N. Ma ◽  
S. Ahmad ◽  
...  

The palm oil industry is one of the major agro-based industries in Malaysia whose production accounts for more than 90% of the world export. The industry, however, also generates enormous quantities of liquid waste with high organic load causing serious pollution problems. In view of the high level of organics, anaerobic pretreatment is usually practised prior to aerobic breakdown. Most of the anaerobic digesters installed at the mills are currently operated under mesophilic conditions. However, the inherently high temperature of the effluent suggests that thermophilic digestion would bring about a much more effective system. This paper reports on results obtained from a pilot plant study on thermophilic anaerobic contact digestion of palm oil mill effluent which has been conducted and includes a microbiological study associated with the investigation.


2016 ◽  
Vol 14 (2) ◽  
pp. 96 ◽  
Author(s):  
Yulian Mara Alkusma ◽  
Hermawan Hermawan ◽  
H Hadiyanto

ABSTRAKEnergi  memiliki  peranan penting dalam proses pembangunan yang pada akhirnya untuk mencapai tujuan sosial,  ekonomi  dan  lingkungan  untuk  serta  merupakan  pendukung bagi kegiatan  ekonomi  nasional. Sumber energi terbarukan yang berasal dari pemanfaatan biogas limbah cair kelapa sawit dapat menghasilkan energi listrik yang saat ini banyak bergantung pada generator diesel dengan biaya yang mahal.Limbah cair kelapa sawit (Palm Oil Mill Effluent atau POME) adalah limbah cair yang berminyak dan tidak beracun, berasal dari proses pengolahan minyak kelapa sawit, namun limbah cair tersebut dapat menyebabkan bencana lingkungan apabila tidak dimanfaatkan dan dibuang di kolam terbuka karena akan melepaskan sejumlah besar gas metana dan gas berbahaya lainnya ke udara yang menyebabkan terjadinya emisi gas rumah kaca. Tingginya kandungan Chemical Oxygen Demand (COD) sebesar 50.000-70.000 mg/l dalam limbah cair kelapa sawit memberikan potensi untuk dapat di konversi menjadi listrik dengan menangkap biogas (gas metana) yang dihasilkan melalui serangkaian tahapan proses pemurnian. Di Kabupaten Kotawaringin Timur terdapat 36 Pabrik Pengolahan Kelapa Sawit yang total kapasitas pabriknya adalah sebesar 2.115 TBS/jam, menghasilkan limbah cair sebesar 1.269 ton limbah cari/jam dan mampu menghasilkan 42.300 m3 biogas.Kata kunci:  Renewable Energy, Plam Oil Mill Effluent, Chemical Oxygen Demand, Biogass, Methane. ABSTRACTEnergy has an important role in the development process and ultimately to achieve the objectives of social, economic and environment for as well as an environmental support for national economic activity. Renewable energy source derived from wastewater biogas utilization of oil palm can produce electrical energy which is currently heavily dependent on diesel generators at a cost that mahal.Limbah liquid palm oil (Palm Oil Mill Effluent, or POME) is the wastewater that is greasy and non-toxic, derived from the processing of palm oil, but the liquid waste could cause environmental disaster if not used and disposed of in open ponds because it will release large amounts of methane and other harmful gases into the air that cause greenhouse gas emissions. The high content of Chemical Oxygen Demand (COD) of 50000-70000 mg / l in the liquid waste palm oil provides the potential to be converted into electricity by capturing the biogas (methane gas) produced through a series of stages of the purification process. In East Kotawaringin there are 36 palm oil processing factory that total factory capacity is of 2,115 TBS / hour, producing 1,269 tons of liquid waste wastewater / h and is capable of producing 42,300 m3 of biogas.Keywords:  Renewable Energy, Plam Oil Mill Effluent, Chemical Oxygen Demand, Biogass, MethaneCara sitasi: Alkusma, Y.M., Hermawan, dan Hadiyanto. (2016). Pengembangan Potensi Energi Alternatif dengan Pemanfaatan Limbah Cair Kelapa Sawit sebagai Sumber Energi Baru Terbarukan di Kabupaten Kotawaringin Timur. Jurnal Ilmu Lingkungan,14(2),96-102, doi:10.14710/jil.14.2.96-102


Sign in / Sign up

Export Citation Format

Share Document