scholarly journals Evaluation of Waste Energy Conversion Technology using Analitycal Hierarchy Process in Bantargebang Landfill, Indonesia

2018 ◽  
Vol 67 ◽  
pp. 02012 ◽  
Author(s):  
Sri R H Siregar ◽  
Budiman R Saragih ◽  
Adi Surjosatyo

In Indonesia, the waste to energy conversion technology has been installed and operate in some landfill, such as Bantargebang landfill where applied landfill gas recovery methods. Evaluate the running process is important to optimize the installed facilities and the other potential technology. This paper aims to evaluate the running process technology in Bantargebang landfill compare with the other waste to energy technology so it can be used as a reference for upgrading technology. Evaluation using Multi Criteria Decision Making techninque with observe method Analitycal Hierarcy Process adopt energy (energy content and net electrical output), environment (MSW reduction and GHG emission), and economic (initial cost and operation maintenance cost) as criterions. The results shows that the anaerobic digestion as alternative technology is the best technology with total point 2.71, followed by inceneration pelletization at second rank with total point 2.70, and running process landfill gas recovery at third rank with total point 2.56.

2013 ◽  
Author(s):  
Naomi B. Klinghoffer ◽  
Marco J. Castaldi

Author(s):  
Kafayat Olafunke Adeyemi ◽  
Urbans Benywanira

Municipal solid waste (MSW) is an energy source that should not go untapped or unutilized. The waste must be properly utilized through combustion, anaerobic digestion, and landfill gas acquisition, as it represents material and energy content. This will reduce the effects of global warming, which is as a result of high concentration of carbon dioxide, methane, and other greenhouse gases (GHGs), in the atmosphere. This chapter focuses on the technologies for solid waste management and the thermodynamics involved in the process for sustainable and cleaner energy. The equations presented represent the thermal efficiency, conversion efficiencies, as well as possible work that can be derived from a power plant utilizing MSW as fuel. It is important that countries in Sub-Saharan Africa vigorously pursue sustainable waste management technologies, especially recycling and landfilling, while exploring and investing in waste-to-energy technologies that will perform optimally using the composition of the waste in Sub-Saharan Africa in the design of the waste-to-energy technology.


Climate ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 100 ◽  
Author(s):  
Maha Alsabbagh

Mitigating climate change to limit the global temperature increase (relative to pre-industrial temperatures) to 2 °C is receiving considerable attention around the world. Here, historical and future carbon dioxide equivalent (CO2e) emissions from municipal solid waste (MSW) in Bahrain were calculated using the revised Intergovernmental Panel on Climate Change (IPCC) 1996 and IPCC 2006 methods. The extent to which waste-to-energy (WtE) technologies can contribute to climate change mitigation was assessed by performing a multicriteria analysis. The results indicated that CO2e emissions from MSW in Bahrain have been increasing since the Askar landfill was constructed in 1986. Emission recalculations indicated that CO2e emissions from MSW contribute 6.2% of total emissions in Bahrain rather than the 11.6% reported in the second national communication. Methane emissions from MSW in 2030 are predicted to be 22–63 Gg. The WtE technologies anaerobic digestion and landfill gas recovery gave the best and gasification the worst multicriteria analysis model results. A database of WtE plants around the world should be compiled to allow decisions around the world to be based on best practices. The potential for maximizing energy recovery and decreasing costs needs to be investigated to allow WtE plants to compete better with renewable and nonrenewable energy sources.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1066 ◽  
Author(s):  
Stergios Vakalis ◽  
Konstantinos Moustakas

The assessment of novel waste-to-energy technologies has several drawbacks due to the nature of the R1 formula. The 3T method, which aims to cover this gap, combines thermodynamic parameters in a radar graph and the overall efficiency is calculated from the area of the trapezoid. The present study expands the application of the 3T method in order to make it suitable for utilization in other energy-from-waste technologies. In the framework of this study, a 3T specialized solution is developed for the case of landfilling plus landfill gas recovery, with the potential inclusion of landfill mining. Numerical applications have been performed for waste-to-energy and landfilling by using both the R1 formula and the 3T method. The model Land GEM was used for the calculation of the total landfill gas. The Combined Heat and Power (CHP) efficiency of the landfill gas CHP efficiency was 16.6%–33.1%, and for the waste-to-energy plant, the CHP efficiency was over 70%. The full range of parameters, like metal recovery and quality of CHP, were not fully reflected by the R1 formula, which returned values of 1.07 for waste-to-energy and from 0.37 to 0.63 for different landfilling scenarios. Contrary to that, the 3T method calculated values between 0.091 and 0.307 for the waste-to-energy plant and values between 0.011 and 0.121 for the various landfilling scenarios. The 3T method is able to account for the recovery of materials like metals and assess the quality of the output flows. The 3T method was able to successfully provide a solution for the case of landfilling plus landfill gas recovery, with the potential inclusion of landfill mining, and directly compares the results with the conventional case of waste-to-energy.


Author(s):  
Francesco Fantozzi ◽  
Bruno D’Alessandro ◽  
Umberto Desideri

A massive effort towards sustainability is necessary to prevent global warming and energy sources impoverishment: both biomass and waste to energy conversion may represent key actions to reach this goal. At the present State Of the Art (SOA) available technologies for biomass and waste to energy conversion are similar and include low to mid efficiency grate incineration or fluidised bed combustion with steam power cycles or mid to high efficiency Gas Turbine based cycles through integrated gasification technology. Nevertheless these plants are all available from mid-to-high scale range that can be highly intrusive on protected areas and socially unacceptable. This paper proposes an innovative, low cost, high efficiency plant in which the residue is gasified in absence of oxygen (pyrolysis), in a rotary kiln, by means of a highly regenerative gas turbine based cycle. Pyrolysis is preferred to gasification, because the syngas obtained has a higher LHV and produces char or tar as a by-product with an interesting energy content to be re-utilized inside the cycle. Different plant configurations are proposed and discussed through principal thermodynamic variables parametric analysis. Results show that very interesting efficiencies are obtainable in the 30%–40% range, at every scale range therefore presenting an interesting alternative especially to small size (below 5 MW) grate incineration and steam power plant technology. Moreover, the IPRP plant provides a unique solution for micro-scale (below 500 kW) power plants, opening a new and competitive possibility for distributed biomass or waste to energy conversion systems where low environmental and social impact turns into higher interest and positive dissemination effect.


Author(s):  
Saber Talebi Anaraki ◽  
Andrew Davies ◽  
Chuanwei Zhuo ◽  
Yiannis A. Levendis

As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications. Plastics, a petroleum-based product, are widely used in manufacturing disposable products and have created a solid waste issue. Due to their abundant supply, and given their high energy content, their use for power generation is of technological interest. However, whereas waste plastics have found limited use in incineration, such a conventional direct combustion technique is ill-controlled and produces considerable amounts of health-hazardous airborne compounds. Thus, an alternative technology is proposed herein to further address our increasing energy needs and, at the same time, utilize our waste plastics streams in an environmentally-benign manner. More specifically, a multi-step process/device is proposed to accept post-consumer plastics, of various types and shapes, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the plastics are liquefied, pyrolyzed, mixed with air, ignited and, finally, burned forming pre-mixed low-emission flames. Combustion is thus indirect, since the solid polymer is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into clean thermal energy and, eventually to electricity.


Sign in / Sign up

Export Citation Format

Share Document