scholarly journals Mitigation of CO2e Emissions from the Municipal Solid Waste Sector in the Kingdom of Bahrain

Climate ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 100 ◽  
Author(s):  
Maha Alsabbagh

Mitigating climate change to limit the global temperature increase (relative to pre-industrial temperatures) to 2 °C is receiving considerable attention around the world. Here, historical and future carbon dioxide equivalent (CO2e) emissions from municipal solid waste (MSW) in Bahrain were calculated using the revised Intergovernmental Panel on Climate Change (IPCC) 1996 and IPCC 2006 methods. The extent to which waste-to-energy (WtE) technologies can contribute to climate change mitigation was assessed by performing a multicriteria analysis. The results indicated that CO2e emissions from MSW in Bahrain have been increasing since the Askar landfill was constructed in 1986. Emission recalculations indicated that CO2e emissions from MSW contribute 6.2% of total emissions in Bahrain rather than the 11.6% reported in the second national communication. Methane emissions from MSW in 2030 are predicted to be 22–63 Gg. The WtE technologies anaerobic digestion and landfill gas recovery gave the best and gasification the worst multicriteria analysis model results. A database of WtE plants around the world should be compiled to allow decisions around the world to be based on best practices. The potential for maximizing energy recovery and decreasing costs needs to be investigated to allow WtE plants to compete better with renewable and nonrenewable energy sources.

2020 ◽  
Vol 190 ◽  
pp. 00027
Author(s):  
Mohammad Soleh ◽  
Hadiyanto Hadiyanto ◽  
Jaka Windarta ◽  
Olga Anne ◽  
Roy Hendroko Setyobudi ◽  
...  

Municipal solid waste (MSW) is still a serious problem in Indonesia. As well as following up on the Indonesian Government’s commitment to reduce carbon emissions, a Presidential decree Perpres Number 18 of 2016 concerning the Acceleration of the Development of Waste-Based Power Plants was made. It is expected that the construction of Waste-Based Power Plants from landfills can reduce the budget deficit in handling municipal waste while maintaining environmental preservation. This research calculates the potential of landfill gas that can be produced from the landfill waste dumps of Jatibarang, as well as the capacity of electrical energy that can be produced. Furthermore, with several types of plant scenarios used, it can be seen the economic feasibility of the construction of a Waste Based Power Plant in Jatibarang landfill. The landfill gas potential and economic feasibility for this study are calculated using the Intergovernmental Panel on Climate Change (IPCC) Inventory Software and LFG-CostWeb from LandGEM. The results showed that only from the electricity sale Standard Reciprocating Engine-Generator Set project may generate a break even in the 6 yr after the operation begins and value of the net present value is USD 755 664 for 15 yr project lifetime.


Sustainable energy supply is one of the main challenges that people will face over the coming decades. Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. Currently it is the largest global contributor of renewable energy, and has significant potential to expand the production of heat, electricity and fuels for transport. Municipal solid waste is an enormous renewable resource that has high energy capacity because it contains a high proportion of biomass materials. This kind of sustainable waste management typically called waste-to-energy is critical for reducing the reliance on fossil fuels and non-renewable materials. Waste-to-energy is a reliable and alternative form of energy that has become the basis for many of the most successful solid waste management systems in many countries. Energy recovery from waste is the conversion of waste materials into useable heat, electricity, or fuel through a variety of processes. This study assesses the potential contribution of waste-to-energy facilities to total Gaza peak power demand up to the year 2040 based on three scenarios: incineration, anaerobic digestion and landfill gas recovery. Three dumping sites are distributed along the Gaza Strip, Johr El-deek, Deir El-balah and Rafah. The analysis shows a potential to produce about 1100 MWh per day based on the anaerobic digestion scenario, about 580 MWh per day based on incineration of municipal solid waste scenario, and about 130 MWh per day based on landfill gas recovery scenario. These values accounts to 275%, 145% and 33% of the year 2014 peak electricity demand of 400 megawatt from the three scenarios, respectively. The forecasted results of the three scenarios can be used to design future waste-to- energy facilities in the main cities of the Gaza Strip. The production cost of energy was 7¢/kWh, 5¢/kWh and 17¢/kWhfor incineration, anaerobic digestion and landfill gas recovery scenarios, respectively.


2019 ◽  
Vol 90 ◽  
pp. 01007
Author(s):  
Farizal ◽  
Tammarar Ekky

This study determines the tipping fee of municipal solid waste in the city of Depok. Two methods used to determine the fee were the income and outcome approach, and the limited resource approach. Two conditions were assumed (i.e., waste management and landfill gas bioreactor availability). From the results, the ideal tipping fee was 97,704 IDR/tonne and the application of a landfill gas reactor could boost income, thus reduced the amount of the fee collected, especially in the early years of the landfill bioreactor in operation. The fees were 40,032 and 63,337 IDR/tonne for scenario 1 and 2, respectively.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 676 ◽  
Author(s):  
Yong ◽  
Bashir ◽  
Ng ◽  
Sethupathi ◽  
Lim ◽  
...  

As Malaysia is a fast-developing country, its prospects of sustainable energy generation are at the center of debate. Malaysian municipal solid waste (MSW) is projected to have a 3.3% increase in annual generation rate at the same time an increase of 3.3% for electricity demand. In Malaysia, most of the landfills are open dumpsite and 89% of the collected MSW end up in landfills. Furthermore, huge attention is being focused on converting MSW into energy due to the enormous amount of daily MSW being generated. Sanitary landfill to capture methane from waste landfill gas (LFG) and incineration in a combined heat and power plant (CHP) are common MSW-to-energy technologies in Malaysia. MSW in Malaysia contains 45% organic fraction thus landfill contributes as a potential LFG source. Waste-to-energy (WTE) technologies in treating MSW potentially provide an attractive economic investment since its feedstock (MSW) is collected almost for free. At present, there are considerable issues in WTE technologies although the technology employing MSW as feedstock are well established, for instance the fluctuation of MSW composition and the complexity in treatment facilities with its pollutant emissions. Thus, this study discusses various WTE technologies in Malaysia by considering the energy potentials from all existing incineration plants and landfill sites as an effective MSW management in Malaysia. Furthermore, to promote local innovation and technology development and to ensure successful long-term sustainable economic viability, social inclusiveness, and environmental sustainability in Malaysia, the four faculties of sustainable development namely technical, economic, environmental, and social issues affiliated with MSW-to-Energy technologies were compared and evaluated.


Author(s):  
Надежда Филимонова ◽  
Стейси Д. ВанДевир

The past three decades witnessed a proliferation of academic research on climate change governance in cities around the world. This research has largely focused on case studies of large cities with populations of over several million. However, Arctic cities have received little attention in the urban governance literature, despite being located in the region most impacted by climate change. This paper examines climate change governance in the Russian city of Murmansk, evaluating how the theoretical framework of multi-level governance—derived primarily from EU and North American scholarship and experience—operates in the Russian urban context. We take municipal solid waste (MSW) management in Murmansk as a case study to better understand how climate change issues are framed and governed by the Murmansk city administration. We assess interactions of Murmansk authorities across vertical and horizontal dimensions, with regional authorities and non-state actors (voluntary associations and NGOs) in MSW governance. The research is based on document analysis, news media, and semi-structured interviews with state and non-state stakeholders in Murmansk. Our analysis finds that Murmansk authorities do not frame climate change as a challenge needing to be addressed by explicit climate-related policies. It also shows the absence of major, multi-level governance (MLG) characteristics in the Murmansk case. Our findings suggest further research is needed to better understand urban climate change governance practices in more centralized states like Russia and this contributes to a critical reflection about the limits and utility of the MLG theoretical framework in many parts of the world.


Author(s):  
Sergio Guerreiro Ribeiro ◽  
Tyler Kimberlin

A new WTE (Waste-to-Energy) power plant configuration combining municipal solid waste and gas turbines or landfill gas engines is proposed. The system has two objectives: increase the thermodynamic efficiency of the plant and avoid the corrosion in the MSW (Municipal Solid Waste) boiler caused by high tube metal temperatures. The difference between this concept and other existing configurations, such as the Zabalgarbi plant in Bilbao, Spain, is lower natural gas consumption, allowing an 80% waste contribution to the net energy exported or more. This high efficiency is achieved through four main steps: 1. introducing condensing heat exchangers to capture low temperature heat from the boiler flue gases; the stack temperature can drop to 70°C; 2. high steam temperatures in external superheaters using hot clean gases heated with duct burners; 3. mixing the exhaust gases of a small gas turbine with hot air preheated in a specially designed heat exchangers. The resulting temperature of this gas mixture is almost the same as a standard gas turbine but with the flow similar to that of a large machine with a higher O2 content; 4. After the duct burner and heat exchangers, the oxygen content of the clean gas mixture is still high, nearly 18%, and the temperature is approximately 200°C. The gas is then used as combustion air to the MSW boiler such that all the energy stays in the system. The efficiency can be as high as 33% for the MSW part of the plant and 49% for the natural gas system. Since the natural gas consumption is almost ten times less than the existing designs, it can be replaced by landfill gas or gasified ethanol or biodiesel. Currently an 850 ton/day plant is being designed in Brazil in partnership with a large power company. Other advantages include, self generation of internal power and lower steam superheating temperatures in the MSW boiler. This concept can be used with any grate design.


2014 ◽  
Vol 931-932 ◽  
pp. 645-649 ◽  
Author(s):  
Chhay Hoklis ◽  
Alice Sharp

The municipal solid waste management (MSWM) is one major concern in Cambodia due to complicated problems from waste sector. Until now, because of poor MSWM, solid wastes have produced high pollution, like methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), which are the substances of greenhouse gas affect to climate change. Therefore, this study was undertaken to estimate and compare the greenhouse gas (GHG) emission from municipal solid waste in different cities namely; Phnom Penh, Battambang, and Siem Reap of Cambodia. GHG emission was calculated through Intergovernmental Panel on Climate Change (IPCC) calculator 2006 based on secondary data of 2009 for all cities. In order to reduce the GHG emission, four scenarios were proposed with different waste treatment technologies such as composting, anaerobic digestion, waste reduction at landfill by separating waste for recycling before disposal off in landfill, and landfill with gas recovery as well. Additionally, the multiple benefits of implementing the proposed scenarios may include reduction of GHG emission, promotion of energy saving for landfill operation, and promotion of the renewable energy concept like electricity.


2004 ◽  
Vol 12 (2) ◽  
pp. 71-95 ◽  
Author(s):  
Adrian K Mohareb ◽  
Mostafa Warith ◽  
Roberto M Narbaitz

The Government of Canada has ratified the Kyoto Protocol, committing to a 6% reduction in greenhouse gas (GHG) emissions from 1990 levels during the commitment period of 2008–2012. To attain this target, emission reductions throughout many sectors must be achieved. The waste sector can assist Canada in reducing GHG emissions to meet its commitments under the Kyoto Protocol. In 2001, the waste sector generated 24.8 megatonnes (Mt) of carbon dioxide equivalent (CO2e) from landfill gas (LFG) generation, wastewater treatment, and incineration. Emissions from the transportation of solid waste were not considered, and are seen to be small. Several strategies for reducing GHG emissions from solid waste are analyzed. Source reduction decreases the amount of material being generated, thus reducing from the source any emissions that might be related to the life cycle of the material. Recycling can reduce GHG emissions by reducing the amount of virgin material being processed, avoiding life cycle emissions. Landfill gas collection for energy recovery can reduce methane (CH4) emissions from organic wastes in landfills, and the Government of Canada's Climate Change Plan has considered this strategy. Anaerobic digestion converts some of the organic matter in the municipal solid waste (MSW) to both CH4 and carbon dioxide (CO2), where the CH4 can be used to generate power, while composting converts some of the organic fraction to CO2. Both of these processes produce a soil conditioner as their residue. Waste incineration reduces MSW volume and can generate power, displacing generation from fossil fuels. An integrated approach, considering these techniques where appropriate, can succeed in reducing emissions from the solid waste sector. Policy choices such as extended producer responsibility, minimum recycled content laws, and LFG capture criteria would increase the impact of solid waste management on GHG emissions. Key words: climate change, Kyoto Protocol, municipal solid waste, source reduction, recycling, landfill gas capture, anaerobic digestion.


2021 ◽  
Vol 145 ◽  
pp. 111080
Author(s):  
M.T. Munir ◽  
Ahmad Mohaddespour ◽  
A.T. Nasr ◽  
Susan Carter

Sign in / Sign up

Export Citation Format

Share Document