scholarly journals The heat transfer and instabilities results during the onset of flow boiling in minichannels

2019 ◽  
Vol 128 ◽  
pp. 01016
Author(s):  
Beata Maciejewska ◽  
Magdalena Piasecka ◽  
Artur Piasecki

The paper discusses the results of flow boiling heat transfer in minichannels obtained on the basis of time-dependent experiments. The main interest of the work was to investigate the occurrence of the accompanying instabilities during the boiling incipience. The essential part of the experimental standwas a test section with two minichannels, each of 1.7 mm depth. The heated element for FC–72flowing along the minichannels was a thin foil. In the tested minichannel, the temperature of the outer surface of the foil was measured due to thermoelements. The onset of flow boiling in minichannels was induced by increasing the heat flux supplied to the heater. The main aims of the investigation were to determine the heat transfer coefficient by means of the FEM with time—dependent Trefftz–type basis functions based on the Hermite interpolation and to recognize dynamic instabilities during boiling incipience. The results were illustrated as: the heat transfer coefficient, the mass flow rate and the inletpressure versustime and as boiling curves.

Author(s):  
Chaobin Dang ◽  
Minxia Li ◽  
Eiji Hihara

In this study, the boiling heat transfer coefficients of carbon dioxide with a PAG-type lubricating oil entrained from 0 to 5 wt% in a horizontally placed smooth tube with an inner diameter of 2 mm were experimentally investigated under the following operating conditions: mass fluxes from 170 to 320 kg/m2s, heat fluxes from 4.5 to 36 kW/m2, and a saturation temperature of 15 °C. The results show that for a low oil concentration of approximately 0.5% to 1%, no further deterioration of the heat transfer coefficient was observed at higher oil concentrations in spite of a significant decrement of the heat transfer coefficient compared to that under an oil-free condition. The heat flux still had a positive influence on the heat transfer coefficient in low quality regions. However, no obvious influence was observed in high quality regions, which implies that nucleate boiling dominates in the low quality region whereas it is suppressed in the high quality regions. Unlike the mass flux under an oil-free condition, mass flux has a significant influence on the heat transfer coefficient, with a maximum increase of 50% in the heat transfer. On the basis of our experimental measurements of the flow boiling heat transfer of carbon dioxide under wide experimental conditions, a flow boiling heat transfer model for horizontal tubes has been proposed for a mixture of CO2 and polyalkylene glycol (PAG oil) in the pre-dryout region, with consideration of the thermodynamic properties of the mixture. The surface tension and viscosity of the mixture were particularly taken into account. New factors were introduced into the correlation to reflect the suppressive effects of the mass flux and the oil on both the nucleate boiling. It is shown that the calculated results can depict the influence of the mass flux and the heat flux on both nucleate boiling and convection boiling.


Author(s):  
Tiago A. Moreira ◽  
Francisco J. do Nascimento ◽  
Gherhardt Ribatski

The scope of the present paper is the evaluation of the heat transfer coefficient during flow boiling of DI-water/silica nanofluid inside a 1.1 mm ID tube. The experiments were performed for nanoparticles and DI-water with both having thermal conductivities of the same order of magnitude (kDI-water = 0.6 W/mK, ksilica = 1.4 W/mK). So, it was possible investigating the effect of the nanoparticles on the heat transfer coefficient under condition of negligible thermal conductivity enhancement. Experiments were carried out for mass velocities of 200, 400 and 600 kg/m2s, heat fluxes from 60 kW/m2 to 350 kW/m2 and nanoparticles volumetric concentration of 0.001%, 0.01% and 0.1%. Moreover, flow boiling heat transfer data under similar experimental conditions were obtained for DI-water without nanoparticles before and after performing each nanofluid test. The experiments were performed at the same test section according to the following sequence: i) DI-water, ii) 0.001% vol. nanofluid, iii) DI-water, iv) 0.01% vol. nanofluid, v) DI-water, vi) 0.1% vol. nanofluid, and vii) DI-water. Such procedure was adopted in order to evaluate the influence of the deposition of nanoparticles at each concentration on the heat transfer coefficient. For single-phase flow the HTC decreases as the experiments were performed. The thermal resistance due to deposition of nanoparticles is relevant to the heat transfer coefficient for single-phase flow of nanofluids inside microchannels. The flow boiling HTC decreases with increasing the nanoparticle volumetric concentration from a concentration of 0.001%. Based on the flow boiling HTC behaviors for tests with pure DI-water before and after the nanofluid tests, the fact that the HTC decreases with increasing the nanoparticle volumetric concentration is not explained only by the deposition on the surface of a nanoparticle layer. Tests for pure DI-water before the tests of nanofluids (BBN condition) and after all the nanofluids tests (ABN 0.1% condition) presents similar heat transfer coefficients, despite the deposition of a nanoparticle layer on the surface.


Author(s):  
Rashid Ali ◽  
Bjo¨rn Palm ◽  
Mohammad H. Maqbool

In this paper the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.7mm and a uniformly heated length of 220mm. R134a was used as working fluid and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 °C and 32 °C. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s and heat flux ranged from 2kW/m2 to 156kW/m2. The test section was heated directly using a DC power supply. The direct heating of the channel ensured uniform heating and heating was continued until dry out was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Rashid Ali ◽  
Björn Palm ◽  
Mohammad H. Maqbool

In this paper, the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.70 mm and a uniformly heated length of 220 mm. R134a was used as a working fluid, and experiments were performed at two different system pressures corresponding to saturation temperatures of 27°C and 32°C. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s, and heat flux ranged from 2 kW/m2 to 156 kW/m2. The test section was heated directly using a dc power supply. The direct heating of the channel ensured uniform heating, which was continued until dryout was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux, while mass flux and vapor quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that the dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.


2018 ◽  
Vol 240 ◽  
pp. 01024
Author(s):  
Beata Maciejewska ◽  
Magdalena Piasecka

Results concerning flow boiling heat transfer in a vertical minichannel of 1.7 mm depth were shown. The channel was asymmetrically heated by a thin foil. Its surface temperature was recorded continuously in points by thermocouples. Measurements were carried out in 0.01 s intervals. The objective of the numerical calculations was to determine the heat transfer coefficient on the heated foil–fluid contact surface in the minichannel from the Robin boundary condition. Both the foil and fluid temperatures were the result of solving the nonstationary two-dimensional problem in the foil and flowing fluid. The problem was solved by using the FEM combined with Trefftz-type basis functions. The values of the time-dependent local heat transfer coefficient were presented and discussed.


2019 ◽  
Vol 128 ◽  
pp. 01017
Author(s):  
Kinga Strak ◽  
Magdalena Piasecka ◽  
Beata Maciejewska

The paper discusses the results of the flow boiling heat transfer in a vertical minichannel with rectangular cross-section. The heating element for FC-72 flowing in the minichannel is a thin plate. Infrared thermography is used to determine changes in the temperature on its outer side. The aim of thecalculation is to determine the heat transfer coefficient using 1D and 2D calculation models. Local values of heat transfer coefficient on the surface between the heated plate and boiling fluid are calculated from the Newton`s and Fourier`s laws. In 2D model the plate temperature distribution is obtained by solving the inverse heat conduction problem. The governing equation is solved by means of two methods: the non-continuous Trefftz method and the Beck method. The results are presented as plate temperature and heat transfer coefficient calculated using 1D and 2D models as a function of the distance fromthe minichannel inlet. The analysis of the results revealed that the values and distributions of the heat transfer coefficient calculated by means of both models were similar. This suggests that all mentioned methods are interchangeable.


2018 ◽  
Vol 70 ◽  
pp. 02014 ◽  
Author(s):  
Kinga Strąk ◽  
Magdalena Piasecka

The paper reports results for flow boiling heat transfer in a 1.7 mm deep minichannel vertically-oriented with upward and downward flow. The heated element for HFE-649 flowing upward or downward in a channel was a smooth plate. Infrared thermography allowed determining changes in temperature on the outer plate side. Two-phase flow structures were recorded through a glass pane at the other side of the channel being in contact with the fluid. Analysis of the results was performed on the basis of experimental series obtained for the same heat flux for upward and downward flows and two mass flow velocities. The results are presented as relationships between the heat transfer coefficient or the plate temperature and the channel length, boiling curves, and between the heat flux and the heat transfer coefficient and two-phase flow structure images. The impact of mass flow velocity on the heat transfer coefficient and two-phase flow structures for vertical upward and downward flows were discussed.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
A. Megahed ◽  
I. Hassan

An analytical model is proposed to predict the flow boiling heat transfer coefficient in the annular flow regime in mini- and microchannel heat sinks based on the separated model. The modeling procedure includes a formulation for determining the heat transfer coefficient based on the wall shear stress and the local thermophysical characteristics of the fluid based on the Reynolds’ analogy. The frictional and acceleration pressure gradients within the channel are incorporated into the present model to provide a better representation of the flow conditions. The model is validated against collected data sets from the literature produced by different authors under different experimental conditions, different fluids, and with mini- and microchannels of hydraulic diameters falling within the range of 92–1440 μm. The accuracy between the experimental and predicted results is achieved with a mean absolute error of 10%. The present analytical model can correctly predict the different trends of the heat transfer coefficient reported in the literature as a function of the exit quality. The predicted two-phase heat transfer coefficient is found to be very sensitive to changes in mass flux and saturation temperature. However, it is found to be mildly sensitive to the change in heat flux.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1832
Author(s):  
Magdalena Piasecka ◽  
Sylwia Hożejowska ◽  
Beata Maciejewska ◽  
Anna Pawińska

The intensification of heat transfer using two-phase boiling flow in mini-channels is widely used to dissipate the high heat fluxes in miniaturized electronic devices. However, the process itself is not fully recognized and still requires experimental studies and developing computation methods appropriate for them. The main aim of this work was the mathematical modeling of time-dependent heat transfer process in FC-72 flow boiling in a mini-channel heat sink with five parallel mini-channels of 1 mm depth. Channels have an asymmetrically heated wall while its outer temperature was measured by infrared thermography. The opposite wall of the mini-channels was transparent, helping to record flow patterns due to a high-speed digital camera. The objective of the numerical calculations was to determine the heat transfer coefficient on the wall-fluid contact surface from the Robin boundary condition. The problem was solved using methods based on the Trefftz-type functions. Three mathematical methods were applied in calculations: the FEM with Trefftz type basis functions, the Classical Trefftz Method, and the Hybrid Picard-Trefftz Method. The results were compared with the values of the heat transfer coefficient obtained from theoretical correlations from the literature.


2019 ◽  
Vol 213 ◽  
pp. 02066 ◽  
Author(s):  
Magdalena Piasecka ◽  
Tomasz Musiał ◽  
Artur Piasecki

The paper focused on flow boiling heat transfer in an annular minigap. This gap of 1 mm width was created between the metal pipe with an enhanced surface contacting fluid and the external glass pipe positioned along the same axis. The heated element for the HFE-649 flowing in the minigap was a cartridge heater. Thermocouples were used to measure the temperature of the metal pipe in the contact surface with a fluid. The local values of the heat transfer coefficient for stationary state conditions were calculated using an one-dimensional method in which the multilayer cylindrical wall was assumed to be planar. The results were presented as a function of the heat transfer coefficient along the minigap length and as boiling curves, prepared for selected values of mass flow rate and five types of the enhanced heated surface and a smooth one. Observations indicated that the highest local values of heat transfer coefficient were obtained with using the enhanced surface produced by electromachining process (spark erosion) at the saturated boiling region. The boiling curves generated for two distances from the minigap inlet have similar plots without a drop in the temperature of the heated surface characteristic for nucleation hysteresis.


Sign in / Sign up

Export Citation Format

Share Document