scholarly journals Prediction of flow and dispersion in cross–ventilated buildings

2019 ◽  
Vol 128 ◽  
pp. 05002
Author(s):  
Ali Cemal Benim ◽  
Michael Diederich ◽  
Ali Nahavandi

The present paper presents a detailed computational analysis of flow and dispersion in a generic isolated single–zone buildings. First, a grid generation strategy is discussed, that is inspired by a previous computational analysis and a grid independence study. Different turbulence models are appliedincluding two-equation turbulence models, the differential Reynolds Stress Model, Detached Eddy Simulation and Zonal Large Eddy Simulation. The mean velocity and concentration fields are calculated and compared with the measurements. A satisfactory agreement with the experiments is not observed by any of the modelling approaches, indicating the highly demanding flow and turbulence structure of the problem.

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Paul Durbin ◽  
Zifei Yin ◽  
Elbert Jeyapaul

An adaptive method for detached-eddy simulation (DES) is tested by simulations of flow in a family of three-dimensional (3D) diffusers. The adaptive method either adjusts the model constant or defaults to a bound if the grid is too coarse. On the present grids, the adaptive method adjusts the model constant over most of the flow, without resorting to the default. Data for the diffuser family were created by wall-resolved, large-eddy simulation (LES), using the dynamic Smagorinsky model, for the purpose of testing turbulence models. The family is a parameterized set of geometries that allows one to test whether the pattern of separation is moving correctly from the top to the side wall as the parameter increases. The adaptive DES model is quite accurate in this regard. It is found to predict the mean velocity accurately, but the pressure coefficient is underpredicted. The latter is due to the onset of separation being slightly earlier in the DES than in the LES.


2019 ◽  
Vol 213 ◽  
pp. 02104
Author(s):  
Lucie Zemanová ◽  
Pavel Rudolf

Modelling of the flow in the cavities between rotor and stator in turbomachines (e.g. pumps or turbines) is a task of great interest. Correctly evaluated pressure and velocity fields enable calculation of the disk losses and therefore assessment of efficiency. It is also crucial for determination of axial thrust and thus design of the bearings. The study demonstrates abilities of various turbulence models to describe the flow in a narrow gap between rotating and stationary disks. Numerical simulations were performed in order to find out the ability of particular models to capture unstable structures appearing during specific operating conditions as well as to calculate the velocity profiles precisely. Large Eddy Simulation (LES), Scale Adaptive Simulation (SAS), Detached Eddy Simulation (DES), Reynolds stress model (RSM) and SST k – ω model were used. Obtained results were also compared with experimental measurement published by Viazzo et al. [1]


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohsen Karimi ◽  
Guven Akdogan ◽  
Ali Dehghani ◽  
Steven Bradshaw

The capability of Computational Fluid Dynamics (CFD) alternates the interest of researcher from the empirical models into the numerical approaches for studying hydrocyclones. This paper presents a comprehensive survey on the influences of turbulence model options in the 3D simulation of the hydrocyclone flow pattern. The required grid resolution was selected through a grid independency study. Four categories of turbulence models involving models based on the Boussinesq hypothesis, the Reynolds Stress Model (RSM), the Large Eddy Simulation (LES) model, and the Detached Eddy Simulation (DES) model were investigated for prediction of velocity components within the hydrocyclone. The methodology was validated by experimental data. The results confirm that both RSM and LES models are efficient turbulent model choices for the simulation of swirling flow of hydrocyclones.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Saman Beyhaghi ◽  
Ryoichi S. Amano

Turbulent air flow over an NACA 4412 airfoil is investigated computationally. To overcome the near-wall inaccuracies of higher order turbulence models such as large Eddy simulation (LES) and detached Eddy simulation (DES), it is proposed to couple DES with algebraic stress model (ASM). Angles of attack (AoA) of 0 and 14 deg are studied for an airfoil subjected to flow with Re = 1.6 × 106. Distribution of the pressure coefficient at airfoil surface and the chordwise velocity component at four locations near the trailing edge are determined. Results of the baseline DES and hybrid DES–ASM models are compared against published data. It is demonstrated that the proposed hybrid model can slightly improve the flow predictions made by the DES model. Findings of this research can be used for the improvement of the near-wall flow predictions for wind turbine applications.


2012 ◽  
Vol 594-597 ◽  
pp. 2676-2679
Author(s):  
Zhe Liu

Although the conventional Reynolds-averaged Navier–Stokes (RANS) model has been widely applied in the industrial and engineering field, it is worthwhile to study whether these models are suitable to investigate the flow filed varying with the time. With the development of turbulence models, the unsteady Reynolds-averaged Navier–Stokes (URANS) model, detached eddy simulation (DES) and large eddy simulation (LES) compensate the disadvantage of RANS model. This paper mainly presents the theory of standard LES model, LES dynamic model and wall-adapting local eddy-viscosity (WALE) LES model. And the square cylinder is selected as the research target to study the flow characteristics around it at Reynolds number 13,000. The influence of different LES models on the flow field around the square cylinder is compared.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012026
Author(s):  
Lisa Lampunio ◽  
Yu Duan ◽  
Raad Issa ◽  
Matthew D. Eaton

Abstract This paper investigates the effects of different inlet velocities on thermal stripping phenomena within a T-junction. The computational flow domain is modelled using the Improved Delayed Detached Eddy Simulation (IDDES) turbulence model implemented within the commercial CFD code STAR-CCM+ 12.04. The computational model is validated against the OECD-NEA-Vattenfall T-junction Benchmark data. The influence of flat and fully developed inlet velocity profiles is then assessed. The results are in good agreement with the experimental data. The different inlet velocity profiles have a non-negligible effect on the mean wall temperature. The mean velocity shows lower sensitivity to changes in inlet velocity profiles, whose influence is confined mainly to the recirculation zone near the T-junction.


Author(s):  
Christophe Friess ◽  
Sébastien Poncet ◽  
Stéphane Viazzo

The present paper concerns a numerical benchmark of various turbulence modelings, from RANS to LES, applied to Taylor-Couette-Poiseuille flows in a narrow gap cavity for six different combinations of rotational and axial Reynolds numbers. Two sets of refined Large-Eddy Simulation results, using the WALE and the Dynamic Smagorinsky subgrid scale models available within an in-house code based on high-order compact schemes, hold for reference data. The efficiency of a RANS model, the Elliptic Blending Reynolds Stress Model (EB-RSM) [1], and a hybrid RANS/LES method, the so-called “Equivalent DES” [2], both run with Code Saturne, is then questioned. Thin coherent structures appearing as negative (resp. positive) spiral rolls are obtained by the LES but also the hybrid RANS/LES along the rotor (resp. stator) sides. More quantitatively, the hybrid RANS/LES does not improve the predictions of the EB-RSM for both the mean and turbulent fields, stressing the need for further theoretical development.


Author(s):  
K. M. Britchford ◽  
J. F. Carrotte ◽  
S. J. Stevens ◽  
J. J. McGuirk

This paper describes an investigation of the mean and fluctuating flow field within an annular S-shaped duct which is representative of that used to connect the compressor spools of aircraft gas turbine engines. Data was obtained from a fully annular test facility using a 3-component Laser Doppler Anemometry (LDA) system. The measurements indicate that development of the flow within the duct is complex and significantly influenced by the combined effects of streamwise pressure gradients and flow curvature. In addition CFD predictions of the flow, using both the k-ε and Reynolds stress transport equation turbulence models, are compared with the experimental data. Whereas curvature effects are not described properly by the k-ε model, such effects are captured more accurately by the Reynolds stress model leading to a better prediction of the Reynolds shear stress distribution. This, in turn, leads to a more accurate prediction of the mean velocity profiles, as reflected by the boundary layer shape parameters, particularly in the critical regions of the duct where flow separation is most likely to occur.


2009 ◽  
Vol 643 ◽  
pp. 233-266 ◽  
Author(s):  
BISHAKHDATTA GAYEN ◽  
SUTANU SARKAR ◽  
JOHN R. TAYLOR

A numerical study based on large eddy simulation is performed to investigate a bottom boundary layer under an oscillating tidal current. The focus is on the boundary layer response to an external stratification. The thermal field shows a mixed layer that is separated from the external stratified fluid by a thermocline. The mixed layer grows slowly in time with an oscillatory modulation by the tidal flow. Stratification strongly affects the mean velocity profiles, boundary layer thickness and turbulence levels in the outer region although the effect on the near-bottom unstratified fluid is relatively mild. The turbulence is asymmetric between the accelerating and decelerating stages. The asymmetry is more pronounced with increasing stratification. There is an overshoot of the mean velocity in the outer layer; this jet is linked to the phase asymmetry of the Reynolds shear stress gradient by using the simulation data to examine the mean momentum equation. Depending on the height above the bottom, there is a lag of the maximum turbulent kinetic energy, dissipation and production with respect to the peak external velocity and the value of the lag is found to be influenced by the stratification. Flow instabilities and turbulence in the bottom boundary layer excite internal gravity waves that propagate away into the ambient. Unlike the steady case, the phase lines of the internal waves change direction during the tidal cycle and also from near to far field. The frequency spectrum of the propagating wave field is analysed and found to span a narrow band of frequencies clustered around 45°.


2010 ◽  
Vol 661 ◽  
pp. 341-364 ◽  
Author(s):  
D. CHUNG ◽  
B. J. McKEON

We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Reτ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity.


Sign in / Sign up

Export Citation Format

Share Document