scholarly journals Reduction of the pull effect of a cylindrical linear synchronous motor

2020 ◽  
Vol 157 ◽  
pp. 01015
Author(s):  
Sergey Shutemov ◽  
Evgeniy Сhabanov ◽  
Anastasia Shevkunova ◽  
Alexander Shapshal ◽  
Temur Тalakhadze

A theoretical and experimental study of the effect of gravity, which occurs in a cylindrical linear synchronous motor between the secondary element and the inductor, was carried out. As a result, the forces of mechanical friction of the secondary element on the inductor are formed, which entails touching the secondary element on the surface of the inductor. An unfavourable result is a weakening of the power force that is working for a cylindrical linear synchronous motor. Two different inductor designs for a cylindrical linear synchronous motor have been studied. When solving this problem, we used an approach based on a combination of the field theory method and the theory of electric circuits. The forces of gravity, friction, and force between the secondary element and the inductor for these structures are determined. Experimentally, it was found that the pull force significantly weakens the working force of the engine. Based on the results obtained, conclusions were drawn about the need to change the design of the inductor. The design change of this element consists in the use of a non-magnetic intermediate centralizer, which is inserted between two sliding bearings located at the ends of each module of a cylindrical linear synchronous motor. Also, changes were made to the design of the magnetic circuit, in which instead of one slot for a three-phase winding system, three symmetrical slots were made, each for its own phase of the three-phase winding. As a result, the magnetic system of the engine in question became axisymmetric. The measures taken to change the design of the engine in question allowed us to dramatically reduce the effect of gravity. As a result, the specific force has increased significantly.

2014 ◽  
Vol 792 ◽  
pp. 239-244 ◽  
Author(s):  
Koichi Nakaiwa ◽  
Hiroyuki Wakiwaka ◽  
Kunihisa Tashiro

The relation between the Electro Motive Force (EMF) and Total Harmonic Distortion (THD) was compared and verified by magnet arrangement. Using Halbach array, thrust was more increase by change of magnet arrangement. Moreover, the variable trend of cogging and THD by magnet ratio and magnet form change was checked.


2013 ◽  
Vol 416-417 ◽  
pp. 227-232
Author(s):  
Mimpei Morishita ◽  
Takayuki Fukuda

The proposed magnetic circuit precisely evaluates magnetic fluxes between the field magnets of dual Halbach arrays. In the case that an actuator is configured with the dual Halback arrays and the armature coils between them, the air gap length between the dual Halbach arrays gives the maximum number of interlinkage magnetic fluxes with the armature coil through algebraic approach. The new design method is on the basis of the proposed magnetic circuit. This method makes it clear that the air gap length should be more than 1.2 times longer than the permanent magnet poles length. The utility of this design method is verified through designing cylindrical linear synchronous motor provided with the dual Halbach arrays.


Author(s):  
Lyubomir Lazov ◽  
Peter Uzunov

In this paper the research results for reducing the detent force in one innovative permanent magnet linear synchronous motor for 2D laser marking system was published. There two methods are used. The first of these methods features the usage of two additional end teeth with chamfers in the magnetic circuit of the movable part. In the second method, the teeth of the ferromagnetic core are with different lengths. As a result of the change of the air gap permeance in both cases substantial reduction of detent force is achieved, in multiples at times. The results obtained are based on modeling and analyzing the linear motor magnetic field by the Finite Element Method (FEM). Provided experimental research of the linear motor prototype proves the correctness of the simulations results.


2021 ◽  
Vol 7 (2) ◽  
pp. 119-129
Author(s):  
Yuri F. Antonov

Background: The methods of calculation and elements of the technology for creating heteropolar magnetic systems of levitation, lateral stabilization and a rotor-runner of a traction linear synchronous motor for the development of the transport technology "Russian Maglev" in order to achieve an increased levitation gap of 0.2 m, reduce the threshold speed of the exit vehicle in levitation mode up to 10 km/h. Aim: to develop methods for calculating and designing heteropolar poles from elementary permanent magnets, coils of the same type based on composite low-temperature superconductors and high-temperature tape superconductors of the second generation and a step-by-step technology for their production. Tasks: Creation of an on-board magnetic system of levitation and lateral stabilization, allowing to provide a levitation gap of 0.2 m, a threshold value of vehicle speed of 10 km/h when transition to levitation mode, to reduce stray magnetic fields to the level of the natural field of terrestrial magnetism of 50 T; Creation of a rotor-runner of a linear synchronous motor with an ironless stator with a power of 10 MW. Methods: outlines the main calculation methodologies: "analysis" and "synthesis". The "analysis" methodology is adopted in solving the "direct" calculation problem, when the configuration of the magnetic system is set and the magnetic field in the working area is calculated, and, if necessary, the stray magnetic fields. This methodology can be effectively applied if there is experience in creating magnetic systems. Otherwise, the "synthesis" methodology is applied, which is used in solving the "inverse" calculation problem, in which the picture of the distribution of the magnetic field in the working zone is set and the configuration of the magnetic system is found (synthesized). Results of the study performed: The parameters and characteristics of high-energy permanent magnets made of rare-earth metals, low-temperature and high-temperature superconducting winding materials have been analyzed, the choice of permanent magnets and superconducting winding material has been made; Calculations of the magnetic system of permanent magnets in the "Halbach assembly" and in the traditional assembly in a toothed ferromagnetic core have been carried out; Calculations of a track coil with a rectangular cross-section of the winding are performed; Methods for calculating and optimizing superconducting magnetic systems from a set of similar track modules have been developed; Conclusions: The results of the performed fundamental research will allow starting the calculation, design and construction of conveyor-main passenger and freight lines of maglev transport, as well as urban public transport.


Sign in / Sign up

Export Citation Format

Share Document