scholarly journals Seasonal variations of water-soluble ions in PM10 at a WMO/GAW station in the Yangtze River Delta, China

2020 ◽  
Vol 194 ◽  
pp. 04058
Author(s):  
Dongqing Fang ◽  
Junli Jin ◽  
Wei Huang ◽  
Yong Zhang ◽  
Wanqi Sun ◽  
...  

In order to understand the seasonal levels, formation mechanism and atmospheric chemical behaviours of water-soluble ions of PM10 in the Yangtze River Delta (YRD) region, aerosol samples were collected from January 2nd to December 28th, 2017 at a WMO/GAW regional background station in Lin’an. The concentrations of PM mass and nine water-soluble inorganic ions were obtained. The annual average concentration of PM10 was 59.9±33.9 μg m−3, lower than those reported in previous studies, indicating air quality of YRD region was improved. Nine water-soluble inorganic ions was accounted for 30.2-45.1% of the total PM mass, while ammonium (NH4+), sulfate (SO42+), as well as nitrate (NO3-) were the major ions which contributed 86.3% to total ions. The NO3- concentration was lowest in summer but highest in winter, suggesting it was likely influenced by thermodynamics. The levels of SO42- in spring and winter were related to photochemical reaction and regional transportation. Except for the SNA, Ca2+ was highest in four seasons likely due to sand storm and road fugitive dust. The annual mean ratio of [NO3-]/[SO42-] was nearly to 1, indicating mobile and stationary sources were equally important in Lin’an. The mean nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were 0.22±0.13 and 0.41±0.13, respectively, suggesting secondary formation was significant in the atmosphere at the background station of YRD region.

2018 ◽  
Vol 18 (23) ◽  
pp. 17177-17190 ◽  
Author(s):  
Peng Sun ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Yuning Xie ◽  
Xin Huang ◽  
...  

Abstract. Particulate nitrate contributes a large fraction of secondary aerosols. Despite understanding of its important role in regional air quality and global climate, long-term continuous measurements are rather limited in China. In this study, we conducted online measurement of PM2.5 (particulate matter with diameters less than 2.5 µm) nitrate for 2 years from March 2014 to February 2016 using the Monitor for AeRosols and Gases in ambient Air (MARGA) in the western Yangtze River Delta (YRD), eastern China, and investigate the main factors that influenced its temporal variations and formation pathways. Compared to other sites in China, an overall high concentration of particulate nitrate was observed, with a mean value of 15.8 µg m−3 (0.5 to 92.6 µg m−3). Nitrate on average accounted for 32 % of the total mass of water-soluble ions and the proportion increased with PM loading, indicating that nitrate is a major driver of haze pollution episodes in this region. Sufficient ammonia drove most nitrate into the particle phase in the form of ammonium nitrate. A typical seasonal cycle of nitrate was observed, with the concentrations in winter on average 2 times higher than those in summer mainly due to different meteorological conditions. In summer, the diurnal variation of particulate nitrate was determined by thermodynamic equilibrium, resulting in a much lower concentration during daytime despite a considerable photochemical production. Air masses from the polluted YRD and biomass burning region contributed to the high nitrate concentration during summer. In winter, particulate nitrate did not reveal an evident diurnal variation. Regional transport from northern China played an important role in enhancing nitrate concentration. A total of 18 nitrate episodes were selected to understand the processes that drive the formation of high concentration of nitrate. Rapid nitrate formation was observed during the pre-episode (the day before nitrate episode day) nights, and dominated the increase of total water-soluble ions. Calculated nitrate from N2O5 hydrolysis was highly correlated to and accounted for 80 % of the observed nitrate, suggesting that N2O5 hydrolysis was a major contributor to the nitrate episodes. Our results suggested that rapid formation of nitrate could be a main cause for extreme aerosol pollution events in the YRD during winter, and illustrated the urgent need to control NOx emission.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 847
Author(s):  
Hao Xiao ◽  
Hua-Yun Xiao ◽  
Zhong-Yi Zhang ◽  
Neng-Jian Zheng ◽  
Qin-kai Li ◽  
...  

Sulfate, nitrate and ammonium (SNA) are the dominant components of water-soluble ions (WSIs) in PM2.5, which are of great significance for understanding the sources and transformation mechanisms of PM2.5. In this study, daily PM2.5 samples were collected from September 2017 to August 2018 within the Guiyang urban area and the concentrations of the major WSIs in the PM2.5 samples were characterized. The results showed that the average concentration of SNA (SO42−, NO3−, NH4+) was 15.01 ± 9.35 μg m−3, accounting for 81.05% (48.71–93.76%) of the total WSIs and 45.33% (14.25–82.43%) of the PM2.5 and their possible chemical composition in PM2.5 was (NH4)2SO4 and NH4NO3. The highest SOR (sulfur oxidation ratio) was found in summer, which was mainly due to the higher temperature and O3 concentrations, while the lowest NOR (nitrogen oxidation ratio) found in summer may ascribe to the volatilization of nitrates being accelerated at higher temperature. Furthermore, the nitrate formation was more obvious in NH4+-rich environments so reducing NH3 emissions could effectively control the formation of nitrate. The results of the trajectory cluster analysis suggested that air pollutants can be easily enriched over short air mass trajectories from local emission sources, affecting the chemical composition of PM2.5.


2011 ◽  
Vol 356-360 ◽  
pp. 2233-2238
Author(s):  
Hong Hui Xu ◽  
Jie Liu ◽  
Min Juan Mao ◽  
Jie Yao

To investigate the characteristics of size distributions and water-soluble ions compositions of atmospheric aerosol in different weather conditions in the area of Yangtze River delta in China, aerosol samples were collected with Andersen cascade sampler on typical clear and hazy days at Lin’an regional background station. The water-soluble ionic concentrations were analyzed by the ion chromatography (IC). Results showed the concentrations of SO42-, NO3-, NH4+ and K+ on hazy days were 20.14, 17.45, 10.30, and 1.27µg m-3 in fine particles, respectively, and the concentrations of NO3-, NH4+ and K+ were 14.50, 2.35 and 0.50µg m-3 in coarse particles, respectively. This was 1.1-2.9 times higher than on clear days. The concentrations of Ca2+, Na+, Mg2+ and Cl- on hazy days were 2.67, 1.33, 0.37, and 1.03µg m-3 in fine particles, respectively, and the concentrations of Ca2+, Na+, Mg2+, Cl- and SO42- were 4.34, 1.27, 0.41, 0.89 and 2.08µg m-3 in coarse particles, respectively. This was 0.6-0.9 times lower than on clear days. K+ and secondary particles including sulfate, nitrate and ammonium came from the long-range transport which mainly from the area of Yangtze River delta, which was the main cause of formation of haze.


2020 ◽  
Author(s):  
Rui Li ◽  
Qiongqiong Wang ◽  
Xiao He ◽  
Shuhui Zhu ◽  
Kun Zhang ◽  
...  

Abstract. Identification of various sources and quantification of their contributions are a necessary step to formulating scientifically sound pollution control strategies. Receptor model is widely used in source apportionment of fine particles. However, most of the previous studies are based on traditional filter collection and lab analysis of aerosol chemical species (usually ions, elemental carbon (EC), organic carbon (OC) and elements) as inputs. In this study, we conducted robust online measurements of a range of organic molecular makers and trace elements, in addition to the major aerosol components (ions, OC and EC), in urban Shanghai in the Yangtze River Delta region, China. The large suite of molecular and elemental tracers, together with water-soluble ions, OC and EC, provide data for establishing measurement-based source apportionment methodology for PM2.5. We conducted source apportionment using positive matrix factorization (PMF) and compared PMF solutions with molecular makers added (i.e. MM-PMF) and those without organic markers. MM-PMF identified 11 types of pollution sources, with biomass burning, cooking and secondary organic aerosol (SOA) as the additional sources identified. The three sources accounted for 4.9 %, 2.6 % and 14.7 % of the total PM2.5 mass, respectively. During the whole campaign, the secondary source is an important source of atmospheric pollution, the average contribution of secondary pollution sources is as high as 63.8 % of the total PM2.5 mass. Grouping different sources to secondary and primary, we note that SOC and POC contributed 45.1 % and 54.9 %, respectively. It is worth noting that the contribution of cooking to PM2.5 mass only account for 2.6 %, but it contributed to 10.7 % of OC. Episodic analysis indicated that secondary nitrate was the always the main cause of PM2.5 pollution, while during non-episodic hours, vehicle exhaust made a significant contribution. Through the application of the above-mentioned techniques to the Yangtze River Delta, more insights are gained on the sources, formation mechanism and pollution characteristics of PM2.5 in this region.


2018 ◽  
Author(s):  
Peng Sun ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Yuning Xie ◽  
Xin Huang ◽  
...  

Abstract. Particulate nitrate contributes a large fraction of secondary aerosols. Despite understanding of its important role in regional air quality and global climate, long-term continuous measurements are rather limited in China. In this study, we conducted online measurement of PM2.5 nitrate for two years from March 2014 to February 2016 using the Monitor for Aerosols and Gases in ambient Air (MARGA) in the western Yangtze River Delta (YRD), eastern China, and investigate the main factors that influenced its temporal variations and formation pathways. Compared to other sites in China, an overall high concentration of particulate nitrate was observed with a mean value of 15.8 µg m−3 (0.5 to 92.6 µg m−3). Nitrate on average accounted for 32 % of the total mass of water-soluble ions and the proportion increased with PM loading, indicating that nitrate is a major driver of haze pollution episodes in this region. Sufficient ammonia drove most nitrate into the particle phase in the form of ammonium nitrate. A typical seasonal cycle of nitrate was observed with the concentrations in winter on average two times higher than those in summer mainly due to different meteorological conditions. In summer, the diurnal variation of particulate nitrate was determined by the thermodynamic equilibrium, resulting in a much lower concentration during daytime despite of a considerable photochemical production. Air masses from polluted YRD and biomass burning region contributed to the high nitrate concentration during summer. In winter, particulate nitrate didn’t reveal an evident diurnal variation. Regional transport from northern China played an important role in enhancing nitrate concentration. Eighteen nitrate episodes were selected to understand the processes that drive the formation of high concentration of nitrate. Rapid nitrate formation was observed during the pre-episode (the day before nitrate episode day) nights, and dominated the increase of total water-soluble ions. Calculated nitrate from N2O5 hydrolysis was highly correlated to and accounted for 80 percent of the observed nitrate, suggesting that N2O5 hydrolysis was a major contributor to the nitrate episodes. Our results suggested that rapid formation of nitrate could be a main cause for extreme aerosol pollution events in YRD during winter, and illustrated the urgent needs to control the NOx emission.


Author(s):  
Barbora Švédová ◽  
Helena Raclavská ◽  
Marek Kucbel ◽  
Jana Růžičková ◽  
Konstantin Raclavský ◽  
...  

This study investigates the chemical composition of water-soluble inorganic ions at eight localities situated in the Moravian–Silesian Region (the Czech Republic) at the border with Poland. Water-soluble inorganic ions were monitored in the winter period of 2018 (January, 11 days and February, 5 days). The set was divided into two periods: the acceptable period (the 24-h concentration of PM10 < 50 µg/m3) and the period with exceeded pollution (PM10 ˃ 50 µg/m3). Air quality in the Moravian–Silesian Region and Upper Silesia is among the most polluted in Europe, especially in the winter season when the concentration of PM10 is repeatedly exceeded. The information on the occurrence and behaviour of water-soluble inorganic ions in the air during the smog episodes in Europe is insufficient. The concentrations of water-soluble ions (chlorides, sulphates, nitrates, ammonium ions, potassium) during the exceeded period are higher by two to three times compared with the acceptable period. The major anions for both acceptable period and exceeded pollution are nitrates. During the period of exceeded pollution, percentages of water-soluble ions in PM10 decrease while percentages of carbonaceous matter and insoluble particles (fly ash) increase.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoye Wu ◽  
Duanyang Liu ◽  
Tianliang Zhao ◽  
Yan Su ◽  
Bin Zhou

In order to investigate the chemical composition distributions and pollution characteristics of Total water-soluble inorganic ions (TWSII) in the rain period (Meiyu) in the East Asian summer monsoon season, including the impact of Meiyu on air pollution in the Yangtze River Delta, East China, the gaseous pollutant concentrations, the 9 sizes segregated particles, and water-soluble inorganic ions of aerosols were measured on the north shore of Taihu Lake from June 4 to July 5, 2016. Results show that the mass concentrations of atmospheric particulate matters (PM2.5 and PM10) and main gaseous pollutants (SO2, NO2, CO, and O3) decrease during the Meiyu period, with the largest decline in PM10 and the smallest in CO. TWSII in atmospheric particles are mainly concentrated in fine particles during the Meiyu period. The values of ρ (TWSII) for PM1.1, PM1.1–2.1, and PM2.1–10 before the Meiyu onset are generally greater than those during the Meiyu period. During the first pollution process, the ρ(TWSII) for PM1.1 and PM1.1–2.1 first increase to the peak values, and then decrease during the moderate rainfall period, when the ρ(TWSII) in PM2.1–10 increase to its maximum before the Meiyu onset. The mass concentrations for anions, cations, and total ions at different particle-size sections all exhibit bimodal distributions before and after the Meiyu onset. The mass concentration peaks at a particle size of 1.1–2.1 μm for fine particles, while at 5.8–9.0 μm (before the Meiyu onset) and 9.0–10.0 μm (during the Meiyu period) for coarse particles, respectively. The peak particle size for mass concentration of coarse particles moves toward larger sizes during the Meiyu period. The mass concentrations of SO42− at different particle-size sections show a bimodal distribution before the Meiyu onset and a multi-modal distribution during the Meiyu period. The mass concentrations of NO3− at different particle-size sections show a bimodal distribution before the Meiyu onset and a unimodal distribution during the Meiyu period. The mass concentrations of NH4+ at different particle-size sections present a bimodal distribution before and after the Meiyu onset, with the particle-size for peak concentrations distributing in 1.1–2.1 and 5.8–9.0 μm before the Meiyu onset, and 9.0–10.0 μm during the Meiyu period. The mean value of nitrogen oxidation ratio (NOR) is higher before the Meiyu onset than after, indicating that the secondary conversion of NO2 before the Meiyu onset is enhanced. The sulfur oxidation ratio (SOR) values are greater than NOR values, but the concentrations of NO2 in the same period during the Meiyu period are higher than those of SO2, which indicates that the secondary conversion of SO2 during the Meiyu period on the north bank of Taihu Lake is stronger than that of NO2. During the whole observation, the contribution of stationary sources mainly contributed to the atmospheric particulate matters during the Meiyu period. The contributions of vehicle exhaust and coal combustion to fine particles are more obviously affected by the changes in meteorological conditions during the Meiyu period, and the vehicle emissions contribute more to PM1.1–2.1 than to PM1.1.


Sign in / Sign up

Export Citation Format

Share Document