scholarly journals Enhanced LVRT capability of Wind Turbine based on DFIG using Dynamic Voltage Restorer controlled by ADRC-based Feedback control

2021 ◽  
Vol 229 ◽  
pp. 01016
Author(s):  
El Mahfoud Boulaoutaq ◽  
Youssef Baala ◽  
Sana Mouslime ◽  
Mhand Oubella ◽  
Mustapha Kourchi ◽  
...  

For grid-connected DFIG-based wind turbine, Fault Ride Through (FRT) or Low Voltage Ride Through (LVRT) capability is vital problem that need to be improved. This paper proposes an Active Disturbance Rejection Control (ADRC) strategy applied to Doubly Fed Induction Generator (DFIG) based Wind turbine (WT), which integrates a Dynamic Voltage Restorer (DVR). The DVR connect in series the DFIG output terminal and the utility grid. The ADRC scheme of the new topology DFIG-based WT with integrated DVR is designed to compensate grid voltage disturbances, which in turn meet LVRT requirement and increase the level of wind power penetration. The performance of this WT-DFIG-DVR structure is investigated in different operating scenarios in order to show the skills of the designed controllers.

Author(s):  
Kiarash Azizi ◽  
Murtaza Farsadi ◽  
Mohammad Farhadi Kangarlu

<span>The capability of low-voltage ride-through (LVRT) of doubly fed induction generator (DFIG) has been considered as an essence for grid code requirements. Any unbalance on the grid side causes the rotor current of the generator to rise which leads to saturate the dc-link of the back-to-back converter or even destroy it. To meet this requirement, a dynamic voltage restorer (DVR) without dc-link energy storage elements is utilized to compensate any disturbance imposed to the DFIG wind turbine system. On the time of any disturbance or fault, DFIG and DVR are properly controlled in order to compensate the specified faulty phase uninterruptedly. DVR is connected in series to the grid and by injecting instantaneous compensating voltage, prevents the stator voltage from rapid changing; consequently, the rotor side converter can accomplish its normal operation. As voltage dips are the most common grid faults subjected to DFIGs, this paper investigates both symmetrical and asymmetrical voltage dips caused by grid faults. The independent and instantaneous phase voltage compensation, less volume, weight, and cost are the merits to utilize the proposed DVR along with DFIG wind turbines. PSCAD/EMTDC based simulations verifies the capabilities of the proposed technique for the LVRT capability of DFIG.</span>


Doubly Fed Induction Generator (DFIG) based wind Energy System are very sensitive to grid disturbance such as Symmetrical voltage sag. In this paper the authors propose a new method for application of Dynamic Voltage Restorer for enhancing the low voltage ride through capability of wind turbine driven Doubly Fed Induction Generator.


Author(s):  
Ashwani Kumar ◽  
Vishnu Mohan Mishra ◽  
Rakesh Ranjan

This paper suggest a control strategy to enhance the LVRT capability of doubly fed induction generator (DFIG) based wind turbine system using dynamic voltage restorer (DVR). Wind turbine generator should support the grid during the fault time. The method used here is series compensation method at the point of common coupling on the occurrence of fault to maintain the stator voltage constant. LVRT performance is improved by optimization of PI parameters using particle swarm optimization as compare to conventional DVR. This PI controller is used to regulate the IGBT pulses of the inverter fed by DC source. To validate the improved LVRT performance, a 9 MW grid integrated DFIG based wind plant is considered. The result shows that the voltage compensation of sag is greatly improved with PSO optimized DVR.


2022 ◽  
Vol 14 (2) ◽  
pp. 859
Author(s):  
Mohamed Adel Ahmed ◽  
Tarek Kandil ◽  
Emad M. Ahmed

Some of the major challenges facing micro-grids (MGs) during their connection with the utility grid are maintaining power system stability and reliability. One term that is frequently discussed in literature is the low-voltage ride-through (LVRT) capability, as it is required by the utility grid to maintain its proper operation and system stability. Furthermore, due to their inherent advantages, doubly fed induction generators (DFIGs) have been widely installed on many wind farms. However, grid voltage dips and distortion have a negative impact on the operation of the DFIG. A dynamic voltage restorer (DVR) is a commonly used device that can enhance the LVRT capability of DFIG compared to shunt capacitors and static synchronous compensator (STATCOM). DVR implements a series compensation during fault conditions by injecting the proper voltage at the point of common coupling (PCC) in order to preserve stable terminal voltage. In this paper, we propose a DVR control method based on the adaptive noise cancelation (ANC) technique to compensate for both voltage variation and harmonic mitigation at DFIG terminals. Additionally, we propose an online control of the DC side voltage of the DVR using pulse width modulation (PWM) rectifier to reduce both the size of the storage element and the solid-state switches of the DVR, aiming to reduce its overall cost. A thorough analysis of the operation and response of the proposed DVR is performed using MATLAB/SIMULINK under different operating conditions of the grid. The simulation results verify the superiority and robustness of the proposed technique to enhance the LVRT capability of the DFIG during system transients and faults.


Sign in / Sign up

Export Citation Format

Share Document