scholarly journals Observer Design for Simultaneous State and Fault Estimation for a Class of Discrete-time Descriptor Linear Models

2021 ◽  
Vol 229 ◽  
pp. 01020
Author(s):  
Kaoutar Ouarid ◽  
Abdellatif El Assoudi ◽  
Jalal Soulami ◽  
El Hassane El Yaagoubi

This paper investigates the problem of observer design for simultaneous states and faults estimation for a class of discrete-time descriptor linear models in presence of actuator and sensor faults. The idea of the present result is based on the second equivalent form of implicit model [1] which permits to separate the differential and algebraic equations in the considered singular model, and the use of an explicit augmented model structure. At that stage, an observer is built to estimate simultaneously the unknown states, the actuator faults, and the sensor faults. Next, the explicit structure of the augmented model is established. Then, an observer is built to estimate simultaneously the unknown states, the actuator faults, and the sensor faults. By using the Lyapunov approach, the convergence of the state estimation error of the augmented system is analyzed, and the observer’s gain matrix is achieved by solving only one linear matrix inequality (LMI). At long last, an illustrative model is given to show the performance and capability of the proposed strategy.

Author(s):  
Manal Ouzaz ◽  
Abdellatif El Assoudi ◽  
Jalal Soulami ◽  
El Hassane El Yaagoubi

This paper presents a state and fault observer design for a class of Takagi-Sugeno implicit models (TSIMs) with unmeasurable premise variables satisfying the Lipschitz constraints. The fault variable is constituted by the actuator and sensor faults. The actuator fault affects the state and the sensor fault affects the output of the system. The approach is based on the separation between dynamic and static relations in the TSIM. Firstly, the method begins by decomposing the dynamic equations of the algebraic equations. Secondly, the fuzzy observer design that satisfies the Lipschitz conditions and permits to estimate simultaneously the unknown states, actuator and sensor faults is developed. The aim of this approach for the observer design is to construct an augmented model where the fault variable is added to the state vector. The exponential convergence of the state estimation error is studied by using the Lyapunov theory and the stability condition is given in term of only one linear matrix inequality (LMI). Finally, numerical simulation results are given to highlight the performances of the proposed method by using a TSIM of a single-link flexible joint robot.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4917
Author(s):  
Ngoc Phi Nguyen ◽  
Tuan Tu Huynh ◽  
Xuan Phu Do ◽  
Nguyen Xuan Mung ◽  
Sung Kyung Hong

In this paper, an actuator fault estimation technique is proposed for quadcopters under uncertainties. In previous studies, matching conditions were required for the observer design, but they were found to be complex for solving linear matrix inequalities (LMIs). To overcome these limitations, in this study, an improved intermediate estimator algorithm was applied to the quadcopter model, which can be used to estimate actuator faults and system states. The system stability was validated using Lyapunov theory. It was shown that system errors are uniformly ultimately bounded. To increase the accuracy of the proposed fault estimation algorithm, a magnitude order balance method was applied. Experiments were verified with four scenarios to show the effectiveness of the proposed algorithm. Two first scenarios were compared to show the effectiveness of the magnitude order balance method. The remaining scenarios were described to test the reliability of the presented method in the presence of multiple actuator faults. Different from previous studies on observer-based fault estimation, this proposal not only can estimate the fault magnitude of the roll, pitch, yaw, and thrust channel, but also can estimate the loss of control effectiveness of each actuator under uncertainties.


Author(s):  
Wei Zhang ◽  
Younan Zhao ◽  
Masoud Abbaszadeh ◽  
Mingming Ji

This paper considers the observer design problem for a class of discrete-time system whose nonlinear time-varying terms satisfy incremental quadratic constraints. We first construct a circle criterion based full-order observer by injecting output estimation error into the observer nonlinear terms. We also construct a reduced-order observer to estimate the unmeasured system state. The proposed observers guarantee exponential convergence of the state estimation error to zero. The design of the proposed observers is reduced to solving a set of linear matrix inequalities. It is proved that the conditions under which a full-order observer exists also guarantee the existence of a reduced-order observer. Compared to some previous results in the literature, this work considers a larger class of nonlinearities and unifies some related observer designs for discrete-time nonlinear systems. Finally, a numerical example is included to illustrate the effectiveness of the proposed design.


Author(s):  
Chung Seop Jeong ◽  
Edwin E. Yaz ◽  
Yvonne I. Yaz

A class of discrete-time nonlinear system and measurement equations having incrementally conic nonlinearities and finite energy disturbances is considered. A linear matrix inequality based nonlinear observer design approach is presented, which guarantees the satisfaction of a variety of performance criteria ranging from simple estimation error boundedness to dissipativity in the presence of random perturbations, due possibly to computational errors or changes during operation, on the observer gain. Some simulation examples are included to illustrate the proposed design methodology.


2014 ◽  
Vol 960-961 ◽  
pp. 774-779
Author(s):  
Na Wang ◽  
Lai Jun Lu

The actual engineering control systems are nonlinear [1-2] and uncertainty [3-4] at the same time, so the robustness and fault diagnosis of systems are more meaningful [5-6]. Sometimes the system is with switching characteristics, which makes the study of switched systems more meaningful. As one of the nonlinear systems, switched systems exist in the practical systems widely, and the phenomenon of delay exists in industrial control nature, or in the life of people widely [7-8]. So the fault diagnosis research [11-12] of nonlinear switched systems with time-delay [9-10] has attracted the attention of many scholars. Motivated with the above issues, the general form of a class of switched systems with time-delay is described in detail, which also mentioned lemma 1 (Schur complement lemma) and lemma 2, the two lemmas will be applied to the proof process of the conclusion. The core part is observer design for time-delay systems fault, which puts forward the uniformly bounded stable condition of fault estimation error system expressed as the linear matrix inequality, and Lyapunov stability is applied to the strict proof. At last, the simulation of MATLAB in a numerical example proved the validity of the conclusion.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Natália A. Keles ◽  
Márcio J. Lacerda ◽  
Cristiano M. Agulhari

This paper presents an approach for the synthesis of observer-based controllers for discrete-time periodic linear systems. The H2 performance criterion has been employed to design both the observer and the controller. For the periodic observer design, two conditions in the form of Linear Matrix Inequalities (LMIs) are proposed, which stem from the Lyapunov Theory applied over the dynamics of the estimation error. The LMI condition obtained for the periodic state-feedback controller results from the application of the duality principle over the periodic system, under the assumption that only the estimated states are available to be used in the state-feedback compensation. Numerical experiments illustrate the potential of the proposed observer-based control technique.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2307
Author(s):  
Sofiane Bououden ◽  
Ilyes Boulkaibet ◽  
Mohammed Chadli ◽  
Abdelaziz Abboudi

In this paper, a robust fault-tolerant model predictive control (RFTPC) approach is proposed for discrete-time linear systems subject to sensor and actuator faults, disturbances, and input constraints. In this approach, a virtual observer is first considered to improve the observation accuracy as well as reduce fault effects on the system. Then, a real observer is established based on the proposed virtual observer, since the performance of virtual observers is limited due to the presence of unmeasurable information in the system. Based on the estimated information obtained by the observers, a robust fault-tolerant model predictive control is synthesized and used to control discrete-time systems subject to sensor and actuator faults, disturbances, and input constraints. Additionally, an optimized cost function is employed in the RFTPC design to guarantee robust stability as well as the rejection of bounded disturbances for the discrete-time system with sensor and actuator faults. Furthermore, a linear matrix inequality (LMI) approach is used to propose sufficient stability conditions that ensure and guarantee the robust stability of the whole closed-loop system composed of the states and the estimation error of the system dynamics. As a result, the entire control problem is formulated as an LMI problem, and the gains of both observer and robust fault-tolerant model predictive controller are obtained by solving the linear matrix inequalities (LMIs). Finally, the efficiency of the proposed RFTPC controller is tested by simulating a numerical example where the simulation results demonstrate the applicability of the proposed method in dealing with linear systems subject to faults in both actuators and sensors.


2004 ◽  
Vol 2004 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Magdi S. Mahmoud ◽  
Peng Shi

This paper develops a result on the design of robust steady-state estimator for a class of uncertain discrete-time systems with Markovian jump parameters. This result extends the steady-state Kalman filter to the case of norm-bounded time-varying uncertainties in the state and measurement equations as well as jumping parameters. We derive a linear state estimator such that the estimation-error covariance is guaranteed to lie within a certain bound for all admissible uncertainties. The solution is given in terms of a family of linear matrix inequalities (LMIs). A numerical example is included to illustrate the theory.


Sign in / Sign up

Export Citation Format

Share Document