scholarly journals Integrated reservoir characterization based on a comprehensive study of the geological structure using 3D seismic survey

2021 ◽  
Vol 266 ◽  
pp. 07009
Author(s):  
A.K. Zhumabekov ◽  
V.S. Portnov ◽  
L. Zhen

The 3D seismic survey is the undisputed leader among tools of identifying potential exploration targets and reservoir characterization. This paper shows surveys that are crucial in the exploration and development of significant amounts of hydrocarbon resources, and enables operator companies to map complex geological structures and select better drilling locations. The purpose of the research is to have better understandings of formations and update previous studies in the oil field of Mangyshlak Basin, Western Kazakhstan. The Main results are the acoustic impedance, Vp/Vs ratio, lithological and reservoir properties data. The quality controls and analysis of results show a good match with well logs and good recovery of seismic signal in inversion, but it should be improved in some areas. The results, from a scientific point of view, expand the already known geological and geophysical studies of the reservoir and improve the quality of interpretation using seismic methods in studying the sedimentation environment.

Neft i gaz ◽  
2020 ◽  
Vol 3-4 (117-1118) ◽  
pp. 84-92
Author(s):  
A.K. ZHUMABEKOV ◽  
◽  
V.S. PORTNOV ◽  

3D seismic survey is the undisputed leader among tools of identifying potential exploration targets and reservoir characterization. This paper shows surveys that are crucial in the exploration and development of significant amounts of hydrocarbon resources, and can be used by operator companies to map complex geological structures and select better drilling locations. The purpose of research work is to have better understandings of formations and update previous studies in oil field of Mangyshlak Basin, Western Kazakhstan. The Main resultsare the acoustic impedance, Vp / Vs ratio, lithological and reservoir properties data. The quality *Автор для переписки. E-mail: [email protected] НЕФТЬ И ГАЗ 2020. 3–4 (117–118) 85 ГЕОФИЗИКА controls and analysis of results show good match with well logs and good recovery of seismic signal in inversion, but it should be improved in some areas. The results, from a scientific point of view, expand the already known geological and geophysical studies of the reservoir and improve the quality of interpretation using seismic methods in studying the sedimentation environment of the site.


2020 ◽  
pp. 8-19
Author(s):  
S. R. Bembel ◽  
R. V. Avershin ◽  
R. M. Bembel ◽  
V. I. Kislukhin

The article deals with the results of studies of the geological structure features of the US2 oil-bearing stratum in the upper part of Tyumen suite (a case study of the Surgut arch fields). Object US2 is represented by low-permeability reservoirs with complex facies variability and an uneven distribution of reservoir properties over area and section, characterized by a thin-layered structure. In this regard, the oil reserves of the US2 structure are naturally classified as hard-torecover, requiring additional work to further study its structure and features for effective development of oil reserves. The facies of river channels, riverbank shoals and sands of floodplain spills were identified, based on the analysis of geological and geophysical materials: 3D seismic survey, core studies, well testing data, sampling and dynamics of wells operation in the area of the deposits in the upper part of the US2 horizon. Based on the analysis of the detailed correlation, three types of section of the US2/1 formation were identified, differing in the nature of the reservoir spread. Based on the 3D seismic survey data, in order to clarify the structure of the US2 formation, a dynamic analysis of the attributes of the seismic record was carried out. Significant coefficients of cross-correlation between the dynamic characteristics and production parameters of the US2/1 formation were not obtained. It is necessary to develop optimal methods for exploration and clarification of the features of the geological structure and forecasting the distribution of reservoir properties, rational methods and approaches to the development of hard-to-recover reserves of Tyumen suite objects with a complex distribution of reservoir properties and variability of productive thicknesses.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1450-1456 ◽  
Author(s):  
P. An ◽  
W. M. Moon ◽  
F. Kalantzis

Feedforward neural networks are used to estimate reservoir properties. The neural networks are trained with known reservoir properties from well log data and seismic waveforms at well locations. The trained neural networks are then applied to the whole seismic survey to generate a map of the predicted reservoir property. Both theoretical analysis and testing with synthetic models show that the neural networks are adaptive to coherent noise and that random noise in the training samples may increase the robustness of the trained neural networks. This approach was applied to a mature oil field to explore for Devonian reef‐edge oil by estimating the product of porosity and net pay thickness in northern Alberta, Canada. The resulting prediction map was used to select new well locations and design horizontal well trajectories. Four wells were drilled based on the prediction; all were successful. This increased production of the oil field by about 20%.


2016 ◽  
Author(s):  
Nejmaoui Mohamed ◽  
Mohamed Hedi Inoubli ◽  
Kawthar Sebei ◽  
Mohamed Houssem Kallel

2021 ◽  
Author(s):  
Sonja Wadas ◽  
Hartwig von Hartmann

<p>The Molasse Basin is one of the most promising areas for deep geothermal exploration in Germany and a very ambitious project in this region is to power the entire district heating system of the city of Munich with renewable energies by 2040; a major part of this will consist of geothermal energy. As part of a joint project (financed by the German Federal Ministry For Economic Affairs And Energy; FKZ 0324332B) the Leibniz Institute for Applied Geophysics (LIAG) works together with the Munich City Utilities (Stadtwerke München), to improve reservoir characterization and sustainable reservoir exploration within the German Molasse Basin. The target horizon for hydrothermal exploration is the aquifer in the Upper Jurassic carbonates. A major problem is the strong heterogeneity of the carbonates. Compared to quantity and quality of the structural data of the reservoir, the database of reservoir properties such as density, porosity and permeability, which describe the geothermal potential, is insufficient. Therefore, it is necessary to generate such data in order to improve the value of the structural information. A 3D seismic survey cannot only provide structural information, but also important reservoir properties such as elastic parameters and seismic attributes. One of the most important attributes is the acoustic impedance, which can be determined with a seismic inversion and used to estimate a porosity volume.</p><p>The data basis for this study was the 170km² GRAME-3D seismic survey measured in Munich, a structural geological model, and drilling and logging data from the geothermal site “Schäftlarnstraße”.</p><p>The inversion results show low impedance values at the top of the reservoir, but also at the middle part. Spatially, the intermediate block of the Munich fault shows low values but also the eastern part of the hanging wall block and the western part of the footwall block. Based on a well correlation a relationship between acoustic impedance and porosity could be determined and a 3D porosity volume was calculated. In the upper part but also in the middle part of the reservoir areas with increased porosity (>10%) are shown, which might indicate a high geothermal potential.</p><p>For a better classification, an attribute analysis was performed. The intermediate block and the eastern part of the hanging wall block show strongly fractured rocks. In contrast, there are hardly any conspicuous features in the western part of the footwall block, although high porosities are also expected here. This suggests that the presence of faults is not the only factor favoring high porosities in carbonates. More likely is a combination with karstification processes, which is why even areas that do not show enhanced tectonic deformation have high porosities.</p>


2021 ◽  
Author(s):  
Oleksii Viktorovych Noskov ◽  
Serhii Mykhailovych Levoniuk ◽  
Mykyta Leonidovych Myrontsov

Abstract Currently, the sequence-stratigraphic section dismemberment is only being implemented in Ukraine, so this article is highly relevant. The authors created geological 3D model of Komyshnianske gas condensate field based on sequence-stratigraphic section dismemberment for the first time at this area. This approach is effective for the following conditions:-insufficient field geological study;-thickness of productive horizons does not reach the seismic resolution boundaries;-no significant difference in impedance values on reflection horizons. The selected technique includes the following stages:-field geological study, facies analysis (integration of well geophysical complexes, cores);-deduction and correlation of sequence boundaries;-construction of discrete log, which corresponds to specific sequences distribution;-conducting seismic interpretation of the 3D seismic survey study of research area;-construction of a structural framework with the involvement of correlated sequences boundaries;-comparison of volume seismic attributes with selected sequences distribution. A geological 3D model of Komyshnianske gas condensate field was created based on sequence-stratigraphic principles. During the research, a geological structure of field was analyzed, the separated conditions of sedimentation (sequences) were deducted and interpreted. During the seismic interpretation of 3D seismic survey of study area, local features of wave field were identified, their reflection in the core material was found and linked to the concept of changing sedimentation conditions. With a general understanding of the material transportation and accommodation direction, used method allows to qualitatively outline the distribution boundaries of sedimentation certain conditions and predict their development outside the study area. Construction of facies discrete log and their distribution in the seismic field allows grouping thin bed layers of collectors to reach the seismic resolution and use them to predict the distribution of facies associated with changes in the rocks reservoir properties (tracking beach facies of deltas/avandeltas, sloping sediments, etc.). The constructed model could be used as a trend for reservoir distribution at the stage of construction of static geological model. Involvement of sequence-stratigraphy technique is new approach to sedimentation conditions study within Dnipro-Donetsk depression (DDD) areas. The paper shows that provided methodology gives:-improved geological understanding of field through sedimentation analysis and facies logging;-trends for reservoir properties distribution with the involvement of construction facies volumes;-proposals for further field E&D. The general provisions under conditions of geological materials sufficient base can be applied to other DDD areas, especially in pre-border zones. Involvement of sequence-stratigraphy technique is new approach for sedimentation conditions study within Dnipro-Donetsk depression (DDD) area. On the example of Komyshnianske gas condensate field, the article shows that provided methodology gives:-improved geological understanding of field through sedimentation analysis and facies logging;-trends for reservoir properties propagation with the involvement of seismic volume studies;-propositions for further field Exploration & Development.


2018 ◽  
Vol 6 (3) ◽  
pp. SG33-SG39 ◽  
Author(s):  
Fabio Miotti ◽  
Andrea Zerilli ◽  
Paulo T. L. Menezes ◽  
João L. S. Crepaldi ◽  
Adriano R. Viana

Reservoir characterization objectives are to understand the reservoir rocks and fluids through accurate measurements to help asset teams develop optimal production decisions. Within this framework, we develop a new workflow to perform petrophysical joint inversion (PJI) of seismic and controlled-source electromagnetic (CSEM) data to resolve for reservoirs properties. Our workflow uses the complementary information contained in seismic, CSEM, and well-log data to improve the reservoir’s description drastically. The advent of CSEM, measuring resistivity, brought the possibility of integrating multiphysics data within the characterization workflow, and it has the potential to significantly enhance the accuracy at which reservoir properties and saturation, in particular, can be determined. We determine the power of PJI in the retrieval of reservoir parameters through a case study, based on a deepwater oil field offshore Brazil in the Sergipe-Alagoas Basin, to augment the certainty with which reservoir lithology and fluid properties are constrained.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1969-1983 ◽  
Author(s):  
M. M. Saggaf ◽  
M. Nafi Toksöz ◽  
H. M. Mustafa

The performance of traditional back‐propagation networks for reservoir characterization in production settings has been inconsistent due to their nonmonotonous generalization, which necessitates extensive tweaking of their parameters in order to achieve satisfactory results and avoid overfitting the data. This makes the accuracy of these networks sensitive to the selection of the network parameters. We present an approach to estimate the reservoir rock properties from seismic data through the use of regularized back propagation networks that have inherent smoothness characteristics. This approach alleviates the nonmonotonous generalization problem associated with traditional networks and helps to avoid overfitting the data. We apply the approach to a 3D seismic survey in the Shedgum area of Ghawar field, Saudi Arabia, to estimate the reservoir porosity distribution of the Arab‐D zone, and we contrast the accuracy of our approach with that of traditional back‐propagation networks through cross‐validation tests. The results of these tests indicate that the accuracy of our approach remains consistent as the network parameters are varied, whereas that of the traditional network deteriorates as soon as deviations from the optimal parameters occur. The approach we present thus leads to more robust estimates of the reservoir properties and requires little or no tweaking of the network parameters to achieve optimal results.


Sign in / Sign up

Export Citation Format

Share Document