scholarly journals Finite element analysis of temporary pre-stress system of precast segmental box girder bridge

2021 ◽  
Vol 276 ◽  
pp. 01015
Author(s):  
Wang Yahui ◽  
Yang Zheng ◽  
Kang Jiangwei ◽  
Li Zhongming

The precast segmental bridge has the advantages of fast construction speed, good economic performance, and small impact on the surrounding environment. In order to study the role of the temporary pre-stressing system in the cantilever assembly process of the precast segment box girder bridge, ABAQUS was used to simulate the assembly process of the standard section of a viaduct. Studying the compressive stress and relative sliding of the joint section under the action of the self-weight and temporary pre-stress, the reasonable number and spatial arrangement of the tension pedestal are determined. The research results show that too few roof pedestals will cause the large area decompression state and too much will cause the construction period to be longer. When the roof symmetrical pedestal is located on the inner side of the web, it will obviously increase the area of the zero-compression stress at the end of the top slab. When the distance between the pedestal and the center of the web is 0.12L, the full section meets the minimum consolidation pressure requirement of the glued joint. The reasonable number of tension pedestals and their spatial arrangement will provide specific guidance and reference to assembling construction of actual precast segment box girder in the future.

2013 ◽  
Vol 275-277 ◽  
pp. 961-965
Author(s):  
Ming Min Tang ◽  
Li Chao Su ◽  
Shui Wan

Taking South-to-North Water Diversion Bridge, a continuous composite box-girder bridge with corrugated steel webs, as the engineering background, the cantilever beam end’s deflection calculation formulae considering shear deformation were deduced by using energy method. Comparing with finite-element analysis (FEA) values and measured values, the formulae which considered both concentrated force and uniform load have enough accuracy. Results show that, shear deformation’s proportion is more obvious in overall deflection of such box-girders which have smaller span ratio, and it’s more than 30%. For continuous composite box-girder bridge with corrugated steel webs, contribution of shear deformation to overall deflection should not be ignored.


2015 ◽  
Vol 744-746 ◽  
pp. 827-831
Author(s):  
Hu Wang ◽  
Fei Han

In order to study the stress distribution law of simply-supported box girder bridge deck pavement under the effect of triangular concrete cushion, finite element analysis program is used to analyze distribution regularity of stress among asphalt and cement concrete cushion at the thinnest thickness of concrete cushion and transverse slope degree under the action of eccentric load which is applied in the most critical position. The result indicates that the first principal stress in asphalt pavement, the interface normal tensile stress and interface shear stress will reduce when the cushion layer thickness and transverse slope degree increase, however, the thinnest thickness of cushion should not be less than 3 cm. Considering the total weight of structure, cushion thickness should not be too large either. The thinnest cushion thickness of simply supported box girder bridge pavement layer is recommended for 3-4cm while transverse slope for 2-3%.


2014 ◽  
Vol 644-650 ◽  
pp. 5054-5060
Author(s):  
Rui Juan Jiang ◽  
Yu Feng Xiao ◽  
Xiao Wei Yi ◽  
Qi Ming Wu ◽  
Wei Ming Gai

There are few studies about the shear lag effect and the effective flange width of the PC (Prestressed Concrete) box girder bridge with corrugated steel webs throughout the world in current time. In the present paper, based on the three-dimensional finite element analysis for a long-span continuous PC box girder bridge with corrugated steel webs and the corresponding conventional box girder bridge with concrete webs, a comparative study on the shear lag effect under vertical loads are carryied out together with the analyslis on the coefficient of the effective flange width. The results show that in the PC box girder with corrugated steel webs, the transverse distributions of longitudinal normal stress on the section of the slabs are obviousely non-uniform and they are different with those in the conventional PC box girder with concrete webs. And moreover, the shear lag effects in top slab of the PC box girder with corrugated steel webs are almost less obvious than those of the conventional PC box girder with concrete webs. However, the shear lag effects in bottom slab of the PC box girder with corrugated steel webs are almost similar to those of the conventional PC box girder with concrete webs, no matter what kind of vertical bending moment the cross section is subjected to


2017 ◽  
Vol 17 (3) ◽  
pp. 586-597
Author(s):  
Huang Huang ◽  
Zhishen Wu

Structural rehabilitation is playing an increasingly important role in civil engineering owing to issues with aging infrastructure. In this context, a feasible inspection and monitoring system is needed to draw up effective structural rehabilitation projects. This article presents a case study of a real box girder bridge strengthened via external post-tensioning. With the aim of evaluating the strengthening project and the structural behavior changes, a large-scale strain sensing system containing four sensing areas was installed on the bridge before strengthening, and the static and dynamic strain distribution changes were recorded during annual inspections. The text focuses on discussing and comparing the variations of strain distribution across the bridge before and after strengthening, as well as the yearly changes the rehabilitated bridge has undergone. From the measured strain responses, we accurately determined that the rehabilitated bridge had undergone an unexpected reduction in its flexural stiffness as well as a torsion action. Moreover, finite element analysis results of three different damage models are discussed to understand the detailed cause for this.


1991 ◽  
Vol 18 (5) ◽  
pp. 789-798 ◽  
Author(s):  
M. S. Cheung ◽  
A. Megnounit

Under a moving load, a bridge undergoes deflections and stresses which significantly exceed those caused by the same load when applied statically. These dynamic deflections can cause discomfort to pedestrians using the bridge, since human response is sensitive to accelerations and to the rate of change of acceleration. Another factor affecting human response is the type of vibration in the dominant mode. People tend to react more adversely to torsional modes of vibration than to flexural modes. This paper summarizes the results of an extensive analytical investigation, which was conducted to identify key parameters affecting the changes of dominant mode types and to study the influence of diaphragms and cross bracings on dynamic responses of a twin box girder bridge. The finite element method was used to carry out these analyses. The analytical results indicate that the provision of diaphragms within the boxes at each support, or of a cross-bracing system in-between boxes, can effectively reduce peak accelerations when the dominant mode of vibration is torsional. As a result, the human discomfort and perception to vibration can be improved. Key words: vibration, human response, torsion, flexure, box girder bridge, diaphragm, cross bracing, finite element analysis.


2014 ◽  
Vol 638-640 ◽  
pp. 1092-1098 ◽  
Author(s):  
Rui Juan Jiang ◽  
Qi Ming Wu ◽  
Yu Feng Xiao ◽  
Xiao Wei Yi ◽  
Wei Ming Gai

In the present paper, based on the three-dimensional finite element analysis for a three-span continuous PC box girder bridge with corrugated steel webs and the corresponding conventional box girder bridge with concrete webs, a comparative study on the shear lag effect under self-weight is carryied out together with the analyslis on the coefficient of the effective flange width. The results show that At the sections in the negative bending moment near the intermediate piers, the shear lag effect in the bridge with corrugated steel webs is more obvious than that in the bridge with concrete webs by 8%; and the corresponding effective flange width coefficient in the bridge with corrugated steel webs is even smaller than 0.9, so the shear lag effect at these sections should be considered in the design of this type of bridges. At the mid-span section of the middle span of a three-span continuous bridge either with corrugated steel webs or concrete webs, the shear lag effect can be omitted since the corresponding effective flange width coefficient there is close to 1.0.


2011 ◽  
Vol 219-220 ◽  
pp. 487-491 ◽  
Author(s):  
Ze Ying Yang ◽  
Yu Zhao ◽  
Zhi Sheng Liu

This paper is based on an existed bridge---ramp bridge A of Mu-Shi interlinked flyover on Zao-Mu Freeway. The model of curved Box Girder Bridge was built using finite element method to simulate the stretching of prestressed tendons. To start with, several different alternative stretching orders were proposed, and afterwards, mechanical reflection of bridge under different stretching orders was calculated and evaluated respectively by commonly used finite element analysis software Midas. Additionally, evaluation principle was to avoid the appearance of tension in the concrete and to minimize stress fluctuation during stretching. To sum up, optimal stretching sequence was put forward after comparison of the calculation results based on the proposed evaluation principle. Moreover, the optimum sequence referred in this paper and the research approach can provide some valuable referential information about the stretching of prestressed tendons of bridges in the same style.


2011 ◽  
Vol 422 ◽  
pp. 693-696
Author(s):  
Yan Weng ◽  
Mei Cen ◽  
Ya Guang Xu

A simple box girder bridge with spans 25m is being constructed on the No.2 road of a project of PanZhiHua Steel. A Bailey trussed girder is constructed under the bridge to assist its construction. The paper makes spatial finite element analysis about the Bailey trussed girder. Firstly, the spatial finite element model is built. Then the force, stress and displacement of the girder under six box girders’ self weigh and the construction load are analyzed in detail. Lastly, the construction scheme is optimized. After optimization, all indexes of Bailey trussed girder can meet code requirement.


2013 ◽  
Vol 671-674 ◽  
pp. 947-951
Author(s):  
Yi Shu Zhou ◽  
Jing Hong Liu

Diaphragm is often used in box-girder bridge for controlling warping stress such those in midspan or transferring strong bearing reactions such those in ends of span. The results of a crack investigation of box-girder bridges showed that vertical cracks can be found on most diaphragms and formed in early stage of the concrete hardening. Temperature caused by hydration heat is an important factor for these cracking. Therefore temperature field prediction for the diaphragm is significant to prevent the concrete diaphragm cracking. In this paper, three-dimensional finite element analysis software ANSYS is used for simulating 3D temperature field of diaphragm of the concrete box girder bridge in all stages of construction. By calculating space temperature field of the diaphragm in different time hydration heat of the law is analyzed, combined with the measured temperature a comparative analysis to verify the validity of the temperature prediction method is conducted. The results show that simulation method is effective and accurate enough to predict the time-varying temperature field of the diaphragm.


2013 ◽  
Vol 454 ◽  
pp. 183-186
Author(s):  
Qi Yong You

The calculations of plan truss and beam-girder method on straight bridge were analyzed, which determined right beam-girder method calculation model of the box-girder bridge. Based on this model, the different radius continuous curved box-girder bridges were simulated by finite element, and then the internal forces of the bridge were obtained. The calculations of inner beam and outer beam show the change rule of internal force and bridge radius. The reasonable calculation methods of continuous curved box girder bridges are obtained, which can offer help to the bridge designers.


Sign in / Sign up

Export Citation Format

Share Document