scholarly journals Detection of intervals / layers in sections of the wells with anomalous areas of drilling mud filtrate contamination according to the well logging (with negative test results of horizons)

2021 ◽  
Vol 280 ◽  
pp. 09007
Author(s):  
Oleksiy Karpenko ◽  
Vasyl Sobol ◽  
Mykyta Myrontsov ◽  
Ivan Karpenko

The zone of infiltration of the drilling fluid filtrate into the reservoir rock creates significant difficulties for the study by logging methods and during further testing of the formation. Due to the penetration of filtrate, significant contamination of the near-wellbore zone occurs. The porosity and filtration characteristics of reservoir rocks are changing. There is a possibility of blockage by filtrate in the invaded zone of oil or gas flow from the formation to the well. As a result of the studies carried out using well logging data, it was found that the presence and distribution of a mud cake on the borehole wall opposite the reservoir is an important factor influencing the process of filtration of the drilling fluid into the layers. On the examples of the Yablunivske oil and gas and Kolomatske gas fields of the Dnieper-Donets basin, it is shown that the absence of a mud cake on the borehole walls leads to the formation of maximum, anomalous zones of filtrate invasion. The determining of the diameter of the invaded zone was carried out according to the data of electrical logging methods. In addition, the diameter of the invaded zone was calculated as a solution direct task equation for the case of direct filtration without blocking by the mud cake. Comparison of the results of determining the diameter of the invaded zone by two methods made it possible to draw certain conclusions. An important conclusion is that even partial absence of mud cake on the reservoir wall in the well leads to horizontal and vertical filtration of the drilling fluid from the well into the formation. As a result, the invaded zone may be so deep, that the gas flow rate is absent even at high values of porosity, permeability and gas saturation

Author(s):  
O. Karpenko ◽  
B. Sobol ◽  
M. Myrontsov ◽  
I. Karpenko

Possibilities of using the well-logging data for revealing the factors of the geological nature that influence the formation of invaded zone of a drilling mud filtrate at oil and gas wells drilling are considered. Electrical logging data were used with probes of different sizes and different types for adequate calculation of the relative diameter of the invaded zone. 5 wells from the gas condensate field were selected for analysis. The terrigenous section of the wells is represented by the alternation of argillites, siltstones and sandstones. Rocks reservoirs of granular type; the layers with thicknesses from 3,4 to 18,2 m were selected for analysis. The results of statistical analysis (cluster and factor analyzes) revealed 3 groups of rocks, the characteristic features of which are significantly differentfrom the invaded zone, layer thickness and porosity and gas saturation coefficients. It is established that for terrigenous sections with reservoir rocks of granular type (Serpukhovian) for one field on the example of 5 wells there is a maximum direct correlation between the value of the relative diameter of the invaded zone and the thickness of the layers. The conducted researches allow making prognostic estimations concerning the approximate distributions of diameters of an invaded zone in terrigenous cuts in case of accident-free drilling with observance of technological conditions.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 34-46
Author(s):  
Marcin Kremieniewski ◽  

The proper cleaning of the annular space before cementing is one of the most important factors affecting the proper sealing of the casing column. Inadequate or incomplete removal of the mud cake or residues of the mud may result in the formation of uncontrolled gas outflows (migration or exhalation) at the contact of the cement sheath with the rock formation and with the surface of run-down casing. It is related to the lack of compatibility in the contact of the mud and the cement. Additionally, the lack of proper cleaning of the annular space will reduce the adhesion value of the cement sheath to the contact surface. The result of the above may be the lack of adequate stabilization of the column of pipes due to its weakened connection in the lower part with the wall, and in the upper part with the previous column of larger diameter pipes. Therefore, to improve both the tightness of the borehole as well as the quality of the cementation condition, laboratory tests of the efficiency of cleaning the annular space are carried out by measuring the efficiency of washing mud removal. So far, measuring the efficiency of mud removal or the effect of washing utilization have been done using a rotary viscometer. During the test, a mud cake is produced on the rotor surface and then removed with washing liquid. Recently, the Oil and Gas Institute – National Research Institute developed a new method for measuring the efficiency of drilling mud removal by using a newly developed drilling fluid flow simulator (Patent P.423842). The device enables the simulation of the drilling fluid flow (drilling fluid, washing fluid, spacer) in the simulated annular space. It is possible to select the parameters of the flow (delivery rate) and the contact time of the liquid with the tested surface. Due to the different measurement principles during the tests with the viscometer and the simulator, it was decided to conduct a comparison and determine the degree of convergence of the discussed methods. The same rinsing liquids were tested to remove the same type of mud, but using different measurement methods. The obtained values of mud removal efficiency were subjected to the correlation analysis, which made it possible to compare the results of the analyzed measurement methods.


2020 ◽  
Vol 1002 ◽  
pp. 435-447
Author(s):  
Lina Jassim ◽  
Robiah Yunus ◽  
Umer Rashid

Nanoparticles have been used to overcome the limitations of drilling oil and gas wellbores under harsh conditions of high pressure and high temperature (HPHT). In the present work, calcium carbonate (CaCO3: 5 µm particles), graphene (powder and platelets) and carbon nano sphere nanoparticles were used as rheology enhancer and fluid loss agent for HTHP drilling fluid technology. The results revealed that by adding only 0.1 wt% of nanoparticles to ester-based drilling mud improved the stability for drilling deep and ultra-deep wells up to 230°C. Furthermore, adding graphene powder gave more effective results comparing to graphene platelets and carbon nano sphere. The mud can plug 10 µm of formation size with 8 ml of filtration and 775 mD of permeability using (21/2 × 1/4 ) inch of ceramic disc. The nanoparticle enhanced ester-based drilling fluid also showed superior rheology, fluid loss amount and mud cake thickness. The application of nano ester based drilling fluid is in oil and gas drilling industry.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


2020 ◽  
Vol 7 (2) ◽  
pp. 191230
Author(s):  
Yuhuan Bu ◽  
Rui Ma ◽  
Jiapei Du ◽  
Shenglai Guo ◽  
Huajie Liu ◽  
...  

This research work designed a novel mud-cake solidification method to improve the zonal isolation of oil and gas wells. The calculation methodology of mud-cake compressive strength was proposed. The optimal formula of activator and solid precursors, the proper activating time and the best activator concentration were determined by the compressive strength test. The effects of solid precursors on the properties of drilling fluid were evaluated. Test results show that the respective percentage of bentonite, metakaolin, slag and activator is 1 : 1 : 0.3 : 0.8, as well as the optimum ratio of Na 2 SiO 3 /NaOH is 40 : 1. The optimum concentration of activator is 0.21 and the activating time should be more than 10 min. The solid precursors did not show any bad influence on the rheological property of drilling fluids. Even though the compressive strength decreased when the solid precursors blended with barite, the strength values can still achieve 8 MPa. The reaction of metakaolin and activator formed cross-link structure in the mud-cake matrix, which enhanced the connection of the loose bentonite particles, lead to the significant enhancement of shear bonding strength and hydraulic bonding strength. This mud-cake solidification method provides a new approach to improve the quality of zonal isolation.


2019 ◽  
Vol 9 (1) ◽  
pp. 3859-3862 ◽  
Author(s):  
R. Iqbal ◽  
M. Zubair ◽  
F. Pirzada ◽  
F. N. Abro ◽  
M. Ali ◽  
...  

Drilling mud density is an important factor in drilling operations. The cost of the drilling mud used for oil and gas well drilling can be 10%-15% of the total drilling cost, and the deeper the well, the more the needed drilling mud. This research aims to prepare a mud that provides performance similar to the conventional mud and to lower down the dependency of primitive CaCO3 technology by exploring it from trash/polluted and naturally occurring materials. For that purpose, a mud was prepared by replacing primeval CaCO3 with the CaCO3 derived from eggshells, as eggshells contain CaCO3 in high amounts which range from 70% to 95%. The success of this project will provide an affordable solution and an alternative way to explore new methodologies for obtaining CaCO3. According to the 2017 Report of Pakistan Poultry Association (PPA) 18,000 Million table eggs are consumed per year in Pakistan. The obtained results of this research are quite satisfactory. CaCO3 obtained from eggshells is used in high amounts, 275–410g to achieve density ranges from 9.5 to 11.0 pounds per gallon whereas, pure the needed quantity of pure CaCO3 is 150g to obtain the density of 10.5 pounds per gallon. Apart from this, it is also observed that eggshell based CaCO3 samples are more efficient in rheological properties compared to the market samples of CaCO3 t. The pH of pure CaCO3 sample of 10.5 pounds per gallon density is almost the same with the sample of eggshell CaCO3 of 10.5 pounds per gallon density.


Author(s):  
Winarto S. ◽  
Sugiatmo Kasmungin

<em>In the process of drilling for oil and gas wells the use of appropriate drilling mud can reduce the negative impacts during ongoing drilling and post-drilling operations (production). In general, one of the drilling muds that are often used is conventional mud type with weighting agent barite, but the use of this type of mud often results in skin that is difficult to clean. Therefore in this laboratory research an experiment was carried out using a CaCO3 weigting agent called Mud DS-01. CaCO3 is widely used as a material for Lost Circulation Material so that it is expected that using CaCO3 mud will have little effect on formation damage or at least easily cleaned by acidizing. The aim of this research is to obtain a formula of mud with CaCO3 which at least gives formation damage. Laboratory experiments on this drilling mud using several mud samples adjusted to the property specifications of the mud program. Mud sample consists of 4, namely using super fine, fine, medium, and conventional CaCO3. First measuring mud properties in each sample then testing the filter cake breaker, testing the initial flow rate using 200 ml of distilled water and a 20 micron filter disk inserted in a 500 ml HPHT cell then assembled in a PPA jacket and injecting a pressure of 100 psi. The acidification test was then performed using 15% HCL and then pressured 100 psi for 3 hours to let the acid work to remove the cake attached to the filter disk (acidizing). Laboratory studies are expected which of these samples will minimize the formation damage caused by drilling fluids.</em>


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 327
Author(s):  
Ekaterina Leusheva ◽  
Nataliia Brovkina ◽  
Valentin Morenov

Drilling fluids play an important role in the construction of oil and gas wells. Furthermore, drilling of oil and gas wells at offshore fields is an even more complex task that requires application of specialized drilling muds, which are non-Newtonian and complex fluids. With regard to fluid properties, it is necessary to manage the equivalent circulation density because its high values can lead to fracture in the formation, loss of circulation and wellbore instability. Thus, rheology of the used drilling mud has a significant impact on the equivalent circulation density. The aim of the present research is to develop compositions of drilling muds with a low solids load based on salts of formate acid and improve their rheological parameters for wells with a narrow drilling fluid density range. Partially hydrolyzed polyacrylamide of different molecular weights was proposed as a replacement for hydrolized polyacrylamide. The experiment was conducted on a Fann rotary viscometer. The article presents experimentally obtained data of indicators such as plastic viscosity, yield point, nonlinearity index and consistency coefficient. Experimental data were analyzed by the method of approximation. Analysis is performed in order to determine the most suitable rheological model, which describes the investigated fluids’ flow with the least error.


2021 ◽  
Author(s):  
Abo Taleb Tuama Al-Hameedi ◽  
Husam Hasan Alkinani ◽  
Shari Dunn-Norman

Abstract Some conventional drilling fluid additives utilized to adjust drilling fluid properties can lead to many issues related to personnel safety and the environment. Thus, there is a need for alternative materials that have less impact on personnel safety and the environment. Many researchers have begun to investigate new alternatives, one example is food wastes. Due to their eco-friendly properties and their vast availability, food wastes are a good candidate that can be exploited as drilling fluid additives. In this work, five different concentrations of eggshells powder (ESP) were added to a reference fluid and the mud weight was measured using mud balance to understand the effects of ESP on mud weight. The results were compared with five concentrations of two commonly used drilling fluid additives - calcium carbonate (CaCO3) and barite. The findings showed that the drilling fluid blends with ESP have significantly outperformed the drilling fluid blends with barite and CaCO3 and for all concentrations in terms of mud weight improvement. The second best blends in terms of mud weight enhancement were the blends with barite and followed by the blends CaCO3. In conclusion, food waste material - ESP outperforming two of the most common drilling fluid additives shows a potential for ESP and other food wastes to be utilized as drilling mud additives in the petroleum industry. This will reduce the harmful chemicals disposed to the environment, reduce exposure risks of drilling crews to harmful chemicals, minimize drilling fluid cost, and revolutionize the industry while contributing to the economy overall.


Sign in / Sign up

Export Citation Format

Share Document