scholarly journals Wind Resistant Analysis of 5000m Hyperbolic Parabolic Spatial Mixed Cable Suspension Bridge

2021 ◽  
Vol 293 ◽  
pp. 02027
Author(s):  
ZhaoYang Chen ◽  
WenPing Xu

Combined with the engineering background of a 5000-meter Strait Suspension Bridge, the configuration study of the hyperbolic parabolic space cable suspension bridge was carried out, and the ANSYS finite element analysis model was established to analyze and study the structural internal force and dynamic modal characteristics. The research shows that the hyperbolic parabolic space mixed cable suspension bridge has excellent spatial stiffness and wind stability performance, its torsional frequency and torsional frequency ratio are significantly improved, the critical wind speed of flutter is greatly improved. In order to further improve the wind stability of the hyperbolic parabolic space mixed cable suspension bridge, temporary wind resistance cable measures adopted during strong typhoons are proposed. This method can ensure that the 5000-meter-level hyperbolic parabolic space mixed cable suspension bridge has the ability to withstand 120 m / s rare extreme typhoons.

2012 ◽  
Vol 166-169 ◽  
pp. 1141-1144
Author(s):  
Hai Tao Wan ◽  
Li Min Zhao

Gravity anchor is one of essential forced components of steady suspension bridge. The paper takes the example of the finite element numerical simulation of steady suspension bridge gravity anchor, main contents include: First, performance parameters of concrete and hydration heat of cement is collected, the one-fourth block of anchor model is established by large-scale general finite element software ANSYS. The process of establishing finite element analysis model includes the input of the model parameters, the boundary conditions set of finite element model, and the mesh of finite element analysis model. Then, the numerical simulation computation to temperature field of gravity anchor is carried by finite element software ANSYS. Finally, from the temperature field distribution curves, studying the temperature distribution rule of concrete pouring and drawing some conclusions.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2013 ◽  
Vol 859 ◽  
pp. 143-148
Author(s):  
Yang Xu ◽  
Ding Ling Li ◽  
Li Peng ◽  
Yan Xiao ◽  
Yi Hua Nie

The finite element analysis model was built as the real scale for mortar arch framework slope protection, and the displacement and strain at different points were collected by vertical loading pressure. So the mechanical mechanism can be studied, and the analysis was done between calculation results and testing results of solid miniature model. The studying results show that the point on the arch foot is the worst stress place for each arch, and the total displacement increase nonlinear as the distance from the slope top increases, and the bump phenomenon exists in the bottom of slope, the points are likely to be broken.


Author(s):  
Dinesh Shinde ◽  
Mukesh Bulsara ◽  
Jeet Patil

Brake friction lining material is the critical element of a braking system, since it provides friction resistance to the rotating drum for controlling automobiles. The present study involves wear analysis of newly developed eco-friendly non-asbestos friction lining material for automotive drum brake applications using experimental study, finite-element analysis, and microstructural investigations. Theoretical interpretation of braking force at different automobile speeds was derived using fundamentals. Specimen drum brake liner with eco-friendly material compositions was produced using an industrial hot compression molding process at one of the manufacturer. The surface wear of the liner was measured using an effective and accurate method. Furthermore, a finite-element analysis model was developed considering actual operating conditions and various components of the drum brake system. The model was elaborated for various result outcomes, including Von-Mises stresses and total deformation of components of the drum brake, and further used to estimate the surface wear of the friction lining material in terms of transverse directional deformation. Finally, microstructural analysis of the friction lining material was carried out using scanning electron microscopy and energy dispersive spectroscopy. From the results, it is seen that the developed friction lining material is wear resistant. The finite-element analysis model can be effectively utilized to study the tribological characteristics of friction lining materials.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


Spine ◽  
2020 ◽  
Vol 45 (16) ◽  
pp. E978-E988
Author(s):  
Deepak Gupta ◽  
Mohd Zubair ◽  
Sanjeev Lalwani ◽  
Shiva Gamanagatti ◽  
Tara Sankar Roy ◽  
...  

2011 ◽  
Vol 121-126 ◽  
pp. 4523-4527
Author(s):  
Yu Yan Liu ◽  
Yan Wang ◽  
Lin Chen ◽  
Ge Li ◽  
Jian Guo Wang

The paper established U75V 100-meter rail 3-D transient non-liner finite element analysis model about U75V 100-meter rail by using the large-scale non-liner finite element analysis software ABAQUS. By analyzing the different positions in the section of the temperature variation, the changes of bending degree and the residual stress variation after the bending deformation have changed. Based on the 100-meter straight rail in natural cooling under the cooling process, simulation results showed that in the cooling process, deflection change with time mainly divided into four stages; In consideration of the friction effect, the flat rail cold curve for its deformation among roughly flat, the curve about either ends, the scope for bending is 18 meters, the maximal displacement is 1.88 meters while the flat rail occured end colding.


Sign in / Sign up

Export Citation Format

Share Document