scholarly journals Numerical Modelling and Experimental Validation of Twin-Screw Pumps Based on Computational Fluid Dynamics using SCORG® and SIMERICS MP+®

2021 ◽  
Vol 312 ◽  
pp. 05007
Author(s):  
Pasquale Borriello ◽  
Emma Frosina ◽  
Adolfo Senatore ◽  
Federico Monterosso

This paper presents a methodology for simulating screw pumps using a 3D-CFD transient approach. It is known in literature that the advantages of screw pumps in noise emission, reliability, and their capacity to work with any kind of fluid make their applications interesting for many fields. Increasing demands for high-performance screw pumps require a deep understanding of the flow field inside the machine. The investigation is performed by use of a 3D computational fluid dynamics analysis based on a single-domain structured moving mesh obtained by novel grid generation procedure through the commercial software SCORG. The real-time mass flow rate, rotor torque, pressure distribution, velocity field, and other performance indicators including the indicated power were obtained from numerical simulations performed in the SimericsMP+ environment. The performance curves of the numerical model were produced for variable rotation speeds and discharge pressures and compared with experimental data with high accuracy. The pressure distribution in the screw groove is relatively uniform, the screw clearance and the meshing area pressure are different from the screw groove pressure distribution. The results demonstrate that the speed does not have a considerable effect on the pressure field. At last, the numerical model was validated by comparing the numerical results with the measured performance obtained in the experimental test rig through the comprehensive experiment performed for a set of discharge pressures and rotational speeds. The model has shown to predict pressure variation and flow rate with good accuracy.

2012 ◽  
Vol 195-196 ◽  
pp. 52-55
Author(s):  
Jian Hua Wang ◽  
Yun De Shen ◽  
Dong Ji Xuan ◽  
Tai Hong Cheng ◽  
Zhen Zhe Li

Not only the price of a steam cleaner but also the performance of it should be considered to improve the competitive power of the products. In this study, a steam duct was optimized by changing the length of guide line for compensating the drawback of the unbalanced mass flow rate of steam from each outlet. For evaluating the mass flow rate of each outlet, a commercial CFD(computational fluid dynamics) code was used. In the process of the optimization, SQP(sequential quadratic programming) optimization algorithm was applied. The numerical method in this study can be widely used to develop a high performance domestic steam cleaner.


Author(s):  
Di Yan ◽  
Qian Tang ◽  
Ahmed Kovacevic ◽  
Sham Rane ◽  
Linqing Pei

Increasing demands for high-performance handling of fluids in oil and gas as well as other applications require improvements of efficiency and reliability of screw pumps. Rotor profile plays the key role in the performance of such machines. This paper analyses difference in performance of 2–3 lobe combination of twin-screw pumps with different rotor profiles. A-type profile formed of involute–cycloid curves and D-type formed of cycloid curves are typical representatives for 2–3 type screw pumps. The investigation is performed by use of a full 3-D computational fluid dynamics analysis based on a single-domain structured moving mesh obtained by novel grid generation procedure. The real-time mass flow rate, rotor torque, pressure distribution and velocity field were obtained from 3D computational fluid dynamics calculations. The performance curves were produced for variable rotation speeds and variable discharge pressures. The computational fluid dynamics model was validated by comparing the simulation results of the A-type pump with the experimental data. In order to get the performance characteristics of D-type profile, two rotors with D-type profile were designed. The first has the same displacement volume as A-type while the second has the same lead and rotor length as A-type but different displacement volume. The comparison of results obtained with two rotor profiles gave an insight on the advantages and disadvantages of each of them.


Author(s):  
M. Elkhoury ◽  
N. Youssef ◽  
C. Issa

In this study, FLUENT (computational fluid dynamics software) is utilized to compare the performance of three widely used hemodialysis catheters, Niagara double lumen, Flexxicon II double lumen and Hemosplit long-term catheters of BARD Access Systems, in terms of blood flow rate and shorter exposure time. Running the three models at a fixed blood flow rate of 300 ml/min, it is found that Niagara catheter displays the lowest shear rates, yet high enough to induce thrombosis, which occurs as a result of platelet aggregation. High vorticity magnitudes exceeding 50,000s−1 are detected near the venous luminal walls of the Hemosplit catheter rendering the formation of Hemolysis which causes free toxic hemoglobin to circulate in the blood stream. Furthermore, the highest shear rates are found to occur at the arterial inlet, downstream the openings where inflow of blood occurs. It was found that the Niagara catheter, with open side holes, is the most recommended among the three considered catheters.


Author(s):  
Ping Zhou ◽  
Bin Wu ◽  
Yuzhu Hu ◽  
Dezhi Zheng ◽  
Jeff Fleitz ◽  
...  

The uniform flow rate is a fundamental requirement in the design of air distributors for the hydrogen reformer furnace. Constraints of flow rate primarily demands on configuration of air distributors. Particularly for the air with different temperature, velocity and pressure, an even distribution of air distributors is especially important. Air distributors containing one inlet and eleven outlets are connected with burners so that uniform flow rate of each outlet is required. Based on CFD (Computational Fluid Dynamics) method, temperature, velocity and pressure distribution in the air distributors are simulated. The results show that flow rate is sensitive to the rate of pressure and velocity change but not for temperature change. The maldistribution of each outlet cannot accord with engineering standard. So, it is necessary to take some methods to decrease the maldistribution of each outlet. The dampers exist at each outlet are controlled individually. Hence, the flow rate can be constrained by adjust pressure according to the proportion of maldistribution.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Rim Farjallah ◽  
Monia Chaabane ◽  
Hatem Mhiri ◽  
Philippe Bournot ◽  
Hatem Dhaouadi

In this paper, we propose a numerical study of a tubular solar collector with a U-tube. A three-dimensional numerical model is developed. It was first used in order to study the efficiency of the solar collector and to evaluate the validity of the developed computational fluid dynamics (CFD) model by comparison with experimental results from the literature. For the numerical simulations, the turbulence and the radiation were, respectively, modeled using the standard k–ε model and the discrete ordinates (DO) model. This numerical model was then used to carry out a parametrical study and to discuss the effect of selected operating parameters such as the fluid mass flow rate, the absorber selectivity, and the material properties. Numerical results show that with the increase of the working fluid flow rate from 0.001 kg/s to 0.003 kg/s, the efficiency of the solar collector is improved (from 30% to 35%). Numerical results also show that the filled-type evacuated tube with graphite presents a best result in comparison with those found using the copper fin tube (η increases from 54% to 64%). Finally, we noted that the use of a high selective absorber surface adds to better performance in comparison with the black absorber tube. This is mainly due to the radiation losses reduction.


Sign in / Sign up

Export Citation Format

Share Document