scholarly journals On the use of tapered channels gas distributors to promote convection in PEM Fuel Cells

2021 ◽  
Vol 312 ◽  
pp. 07018
Author(s):  
Alessandro d’Adamo ◽  
Massimo Borghi

Polymeric Exchange Membrane Fuel Cells (PEMFC) are promising power propulsion systems for the decarbonization of the transportation sector. Despite being a well-known method for the direct production of electric current from the reactants chemical energy, one of the major limitations to their large-scale industrial development are fluid dynamics and mass transport aspects, crucially limiting the electrochemistry rate under critical conditions. This is especially verified in PEMFC with serpentine-type gas distributors, for which such areas are identified in proximity of the gas channel bends where the dominant mechanism for species transport shifts from a convection-enhanced to a diffusion-limited one. An engineering method to enhance the convective transport in such deficient areas is the use of gas distributors with tapered channels, effectively forcing the flow in diffusive media and improving the reactants delivery rate and products removal. A numerical analysis is presented on a limited domain representing a section of a serpentine gas distributor. A multi-dimensional CFD study is carried out comparing conventional-type and tapered channel distributors, evaluating the combined effect of pressure losses, catalyst layers utilization, flow regime in anisotropic diffusion media and convection/diffusion balance via a non-dimensional analysis. The study covers various inlet Reynolds numbers and in-plane permeability of porous materials for two diffusion media thicknesses, with the aim to extend the generality of the study. Conclusions based on the simulation results outline channel tapering as a very effective way to improve the power density of PEMFC, although an energetic cost/benefit analysis indicates a reduced cell efficiency.

2013 ◽  
Vol 724-725 ◽  
pp. 723-728
Author(s):  
Xue Nan Zhao ◽  
Hong Sun ◽  
Zhi Jie Li

High temperature proton exchange membrane (HT-PEM) fuel cell is considered as one of the most probable fuel cells to be large-scale applied due to characteristics of high efficiency, friendly to environment, low fuel requirement, ease water and heat management, and so on. However, carbon monoxide (CO) content in fuel plays an important role in the performance of HT-PEM fuel cells. Volt-ampere characteristics and AC impedance of HT-PEM fuel cell are tested experimentally in this paper, and effects of CO in fuel on its performance are analyzed. The experimental results show that CO in fuel increases remarkably the Faraday resistance of HT-PEM fuel cell and decreases the electrochemical reaction at anode; the more CO content in fuel is, the less HT-PEM fuel cell performance is; with the increasing cell temperature, the electrochemical reaction on the surface of catalyst at anode is improved and the poisonous effects on the HT-PEM fuel cell are alleviated.


Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 2063 ◽  
Author(s):  
Saverio Latorrata ◽  
Cinzia Cristiani ◽  
Giovanni Dotelli ◽  

Fuel Cells ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 463-471 ◽  
Author(s):  
S. Latorrata ◽  
P. Gallo Stampino ◽  
C. Cristiani ◽  
G. Dotelli

Sign in / Sign up

Export Citation Format

Share Document