scholarly journals Slope stability analysis of the drainage tunnel portal in Tanju Dam, Dompu District, West Nusa Tenggara

2021 ◽  
Vol 325 ◽  
pp. 01016
Author(s):  
Edden Umaga Dinata ◽  
I Gde Budi Indrawan ◽  
Arifudin Idrus

This paper presents design results of the tunnel portal slopes at the Tanju Dam, Dompu, West Nusa Tenggara. The objective of this research was to analyse the stability of the tunnel portal slopes using circular failure chart (CFC) method, limit equilibrium method (LEM), and finite element method (FEM). Input parameters were obtained from drill core evaluations and laboratory tests. By considering the rock mass rating (RMR) values of rock masses, which are categorized as class II, at the two slopes, adjustments for the cohesion and inner friction angle values are made. The inlet slope (IL) have cohesion values of 350 kPa and 40º inner friction angle and the outlet slope (OL) have cohesion values of 400 kPa and 45º inner friction angle. The CFC method shows that the IL and OL have safety factor (FS) values of 3.5 and 3.44, respectively. The LEM shows that the IL and OL have the FS values of 3.69 and 3.65, respectively. Meanwhile, the FEM shows that the IL and OL have FS values of 4.78 and 4.79, respectively. The stability analysis results indicate that designed slopes are stable.

2012 ◽  
Vol 166-169 ◽  
pp. 2535-2538
Author(s):  
Ke Wang ◽  
Chang Ming Wang ◽  
Fang Qi ◽  
Cen Cen Niu

The traditional limit equilibrium method in the analysis of slope stability not only exists some subjective empirical hypothesis that can not meet the equilibrium of force and moment, but also ignores the effects of internal stress and strain on the slope stability. Furthermore, in the stability of the slope evaluation, limit equilibrium method relies too much on experience when hypothesizing the slope slip surface. So that it makes deviation on slope analysis and stability evaluation. This paper is based on simplified Bishop method used to establish the model of slope stability analysis. And it used genetic algorithms to solve the minimum safety factor and the most dangerous slip surface of slope. It was the arithmetic which simulates organisms genetic evolutionary process and it avoided the traditional methods falling into the local extreme value point easily and error propagation leading to convergence. The algorithm had advantages of higher accuracy, quick convergence and applicability. It showed that the genetic algorithm is accurate and reliable in the analysis of slope stability.


2012 ◽  
Vol 249-250 ◽  
pp. 1099-1102
Author(s):  
Yi Sheng Huang ◽  
Jian Lin Li

Amending the normal stress over the slip surface based on the stress field by numerical analysis, applying the three-dimensional global limit equilibrium method to the stability analysis of tension-slackened rock mass in the right bank of Yagen hydropower station. Stability analysis shows that if do not take any measures, the loose rock mass stability can cater to the Specification demand, but some small sliders is in the limit state under the water and earthquake condition, if use the cutting slope and unloading scheme, the whole loose rock mass and the all small sliders can meet the Specification standard stability requirements.


2011 ◽  
Vol 250-253 ◽  
pp. 1711-1716
Author(s):  
Li Chao Wang ◽  
Ping Gen Zhou

The limit equilibrium method for rigid body is used to analyze the stability of subgrade reservoir bank slope of granite stained. The sliding of subgrade reservoir bank slope reinforced by dynamic compaction along the interface will not be happened. In the most unfavorable conditions , the sliding surface will be formed inside the stained subgrade, which threatened to the safety operation of the expressway.


2021 ◽  
Author(s):  
Wei Wang ◽  
Jiaqi Zhang ◽  
Ao Liu

Abstract In order to improve the theoretical analysis of surrounding rock stability of shallow buried tunnel. The strength reduction shortest path theory is applied to the stability analysis of shallow buried tunnel surrounding rock, combined with the ultimate equilibrium strength reduction theory. We discussed the influence of the depth and span ratio of tunnel, cohesion, and internal friction angle on the shortest path of the strength reduction, and studied the effects of various factors on shallow buried tunnel safety relationship by using strength reduction factor of safety and the shortest path of the shallow buried tunnel surrounding rock and the grey relational analysis theory. The results show that: In the analysis of shallow buried tunnel in strength reduction, the approximate distribution obeys parabolic between reduction path length and the reduction ratio. When the strength reduction of cohesion is the shortest path the reduction rate is greater than the internal friction angle. The internal friction angle and cohesive force have a great influence on the stability of shallow tunnel under the method of shortest path of strength reduction. Finally, the comprehensive safety factor of shallow buried tunnel calculated by the finite element strength reduction shortest path method is greater than that calculated by the limit equilibrium method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hang Lin ◽  
Wenwen Zhong ◽  
Wei Xiong ◽  
Wenyu Tang

In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factorD. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rockσci, and the parameter of intact rockmi. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase ofD, the safety factor of slopeFdecreases linearly; with the increase of GSI,Fincreases nonlinearly; whenσciis relatively small, the relation betweenFandσciis nonlinear, but whenσciis relatively large, the relation is linear; with the increase ofmi,Fdecreases first and then increases.


2013 ◽  
Vol 275-277 ◽  
pp. 1480-1483
Author(s):  
Li Zhang ◽  
Dan Pang ◽  
Jian Liu

The main purpose of the gravity dam stability analysis is to examine the stability safety in all possible load combination cases. Combined with the engineering example, the method of modeling , loading and analysis for the gravity dam by ansys is introduced in this paper, then the limit equilibrium method and the strength reserve method are adopt to calculate the safety factor under two conditions. The results indicate that the two safety factors which are calculated under two conditions can all satisfy the standard requirement; it is reasonable to analyze the gravity dam stability through two methods.


2015 ◽  
Vol 777 ◽  
pp. 106-111 ◽  
Author(s):  
Zhen Hua Xie ◽  
Ran Yi Xie ◽  
Xiao Yue Lu

The stability of slope in open-pit affects the economic benefits and safety production of mining enterprises. From the two aspects of internal factors and external factors, this paper analyses the factors affecting the slope stability of open-pit, discusses the basic theory of slope stability analysis, and puts forward the criterion of slope stability based on the safety coefficient. The limit equilibrium method is chosen to analyze the stability of the high and steep slope of open-pit in this paper, and the SLIDE software is used for numerical simulation according to the actual slope model of certain open-pit. The simulation results show that the slope safety coefficient of the instance is 1.01, which is unstable slope. When the number of the slope blocks is more than 40, the safety coefficient tend to be stable. Blasting vibration has a great influence on slope stability. The results of slope stability analysis provide a scientific guidance for the prevention and control of the slope instability.


2011 ◽  
Vol 250-253 ◽  
pp. 1823-1826 ◽  
Author(s):  
Kai Wang ◽  
Hai Gui Kang ◽  
Hai Tao Wang

The main feature of NATM is to utilize all available means to develop the maximum self-supporting capacity of the surrounding rock or soil itself, and to undertake investigation and monitoring during construction to provide the stability of the tunnel. If undetected worse ground condition is encountered, the strengthening works will be carried out to ensure safety. In this case study, taking the Wangkeng tunnel portal engineering of the Jiyuan-Shaoyuan Expressway in Henan Province as an example, the calculation and evaluation of landslide stability are performed by limit equilibrium method and FEM. Based on the results of stability analysis, the anti-slide piles and ground drainage are adopted as the harnessing measures of landslide. Comparison of stability analysis before/after landslide harnesses was made by FEM. The results show that these treatments can satisfy the design requirements. It could be a useful reference to the design and construction of tunnels with soil entrance.


2011 ◽  
Vol 243-249 ◽  
pp. 2690-2693
Author(s):  
Lin Yan Li ◽  
Yin Liu ◽  
Hao Chen ◽  
Heng Bin Wu

Present methods for stability analysis of underwater slopes are mostly confined to laboratory experiments and limit equilibrium method. This paper is based on strength reduction method, considering the deformation parameters of rock mass to discuss the stability of underwater slopes. Comparing the consequences, the sliding planes and safety factors agreed well with the result of limit equilibrium method. The applicability of strength reduction method for underwater slopes stability was well proved. When analyzing after changing the water depth, it was showed that there are more erosion effect induced and reduction for the parameters of rock mass, but little influence on the safety factor of underwater slopes.


2019 ◽  
Vol 11 (2) ◽  
pp. 90-94
Author(s):  
D. Tao ◽  
O.S. Barykina ◽  
K. Kang

 There are many engineering-geological problems in Moscow, including seepage deformation, karst and landslide. Among them, landslides develop along the Moscow River and its branches. This paper aims to analyze the slope stability of “Vorobyovy Gory” landslide with the help of the program GeoStudio. According to the limit equilibrium method, we can know the slope stability. In addition, we can know the internal friction angle among in the physical and mechanical parameters of soil layer has the greatest influences on its stability by sensitivity analysis. Finally, we can get the probability of damage by probabilistic analysis.


Sign in / Sign up

Export Citation Format

Share Document