Study of the Three-Dimensional Global Limit Equilibrium Method Applied to the Stability of Rock Slope

2012 ◽  
Vol 249-250 ◽  
pp. 1099-1102
Author(s):  
Yi Sheng Huang ◽  
Jian Lin Li

Amending the normal stress over the slip surface based on the stress field by numerical analysis, applying the three-dimensional global limit equilibrium method to the stability analysis of tension-slackened rock mass in the right bank of Yagen hydropower station. Stability analysis shows that if do not take any measures, the loose rock mass stability can cater to the Specification demand, but some small sliders is in the limit state under the water and earthquake condition, if use the cutting slope and unloading scheme, the whole loose rock mass and the all small sliders can meet the Specification standard stability requirements.

2012 ◽  
Vol 166-169 ◽  
pp. 2535-2538
Author(s):  
Ke Wang ◽  
Chang Ming Wang ◽  
Fang Qi ◽  
Cen Cen Niu

The traditional limit equilibrium method in the analysis of slope stability not only exists some subjective empirical hypothesis that can not meet the equilibrium of force and moment, but also ignores the effects of internal stress and strain on the slope stability. Furthermore, in the stability of the slope evaluation, limit equilibrium method relies too much on experience when hypothesizing the slope slip surface. So that it makes deviation on slope analysis and stability evaluation. This paper is based on simplified Bishop method used to establish the model of slope stability analysis. And it used genetic algorithms to solve the minimum safety factor and the most dangerous slip surface of slope. It was the arithmetic which simulates organisms genetic evolutionary process and it avoided the traditional methods falling into the local extreme value point easily and error propagation leading to convergence. The algorithm had advantages of higher accuracy, quick convergence and applicability. It showed that the genetic algorithm is accurate and reliable in the analysis of slope stability.


2011 ◽  
Vol 243-249 ◽  
pp. 2690-2693
Author(s):  
Lin Yan Li ◽  
Yin Liu ◽  
Hao Chen ◽  
Heng Bin Wu

Present methods for stability analysis of underwater slopes are mostly confined to laboratory experiments and limit equilibrium method. This paper is based on strength reduction method, considering the deformation parameters of rock mass to discuss the stability of underwater slopes. Comparing the consequences, the sliding planes and safety factors agreed well with the result of limit equilibrium method. The applicability of strength reduction method for underwater slopes stability was well proved. When analyzing after changing the water depth, it was showed that there are more erosion effect induced and reduction for the parameters of rock mass, but little influence on the safety factor of underwater slopes.


2013 ◽  
Vol 275-277 ◽  
pp. 1427-1430
Author(s):  
Yi Sheng Huang ◽  
Jian Lin Li

Firstly analyzed the stability of blocks with block theory and secondly evaluated the stability of blocks with three-dimensional limit equilibrium method and finally evaluated the whole stability of slopes. Stability analysis for the slope of Maerdang hydropower station shows that natural slopes which belong to the upstream of Hadehei ditch on the right bank will not occur wedge slide, tailrace slopes of hydropower station have not sliding slopes searched which are in potential slide, if taking some measures to reinforce the stability of man-made slopes on the face rock-fill hub, which may meet the demand of the specification.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Rui Zhang ◽  
Jie Zhao ◽  
Guixuan Wang

Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM), and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.


2015 ◽  
Vol 52 (12) ◽  
pp. 2055-2066 ◽  
Author(s):  
Hao Cheng ◽  
Xiaoping Zhou

Conventional stability analysis of landslides is investigated using the factor of safety of the entire sliding body, which provides no information concerning displacements of the analyzed landslides. In this paper, a novel displacement-based rigorous limit equilibrium method is proposed to investigate the displacements and stabilities of three-dimensional landslides. The relationship between the shear stresses acting on the base of the columns and the shear displacements is established based on the hyperbolic soil model, which can be directly obtained from direct shear tests. According to the displacement compatibility among the columns, the shear displacements of all columns can be determined by the vertical and horizontal displacements at a key point. Combining the six equilibrium conditions of the discretized columns with the nonlinear constitutive relation between stress and displacement of soils, the vertical displacement at the key point can be determined. By introducing the strength reduction technique into the displacement-based rigorous limit equilibrium method, the relationship between the reduction factor and the vertical displacement can be obtained. The displacement and the safety factor of three-dimensional landslides can be defined. Moreover, two cases are given to verify the robustness and precision of the present method in detail.


2013 ◽  
Vol 634-638 ◽  
pp. 3701-3704 ◽  
Author(s):  
Rui Wang ◽  
Xi Wang ◽  
Kun Yin ◽  
Yang Zhao

In order to monitor landslide risk, GeoStudio software is frequently applied to landslide stability analysis. In this paper, Juting landslide in Shanxi was subjected by GeoStudio software, while limit equilibrium method was adopted to calculate the landslide stability in the slip surface. The solutions of stress and displacement vector were gotten through SIGMA / W module on the landslide for finite element method in sliding surface stress analysis. And it was also used to import the results obtained in SIGMA / W module into SLOPE / W module to calculate safety factor and the potential sliding surface. The result shows that the calculated safety factors which are worked out by those two ways are close to each other, and limit equilibrium method can be used in landslide stability analysis, but the finite element method is more consistent with the actual situation. GeoStudio software can calculate landslide stability coefficient conveniently, and can express potential slip surface intuitively, providing reliable foundation for landslide stability analysis.


Sign in / Sign up

Export Citation Format

Share Document