internal friction angle
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 58)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
B. Wang ◽  
J. H. Gao ◽  
Y. Q. Wang ◽  
X. J. Quan ◽  
Y. W. Gong ◽  
...  

The direct shear tests of different dry density and moisture content samples at different temperatures of the frozen soil in the Qinghai-Tibet Railway embankment between Tanggula South and Anduo section were carried out to analyze the influence rules of each experimental factor on the mechanical properties of frozen soil during the freeze-thaw process. The results show the following. (1) When the frozen soil temperature is below 0°C and continues to drop during the freezing and thawing process, each sample shows the law of a significant increase in cohesion and a slight decrease in the internal friction angle. In the meantime, the cohesion obtained during the thawing process of the sample at the same temperature point is higher than that obtained during the freezing process. In contrast, the internal friction angles exhibit an opposite law, where the internal friction angle during the melting process is lower than the internal friction angle during the freezing process. After freezing-thawing action, it deserves to be mentioned that the cohesion increases slightly while the internal friction angles present a slight decrease trend compared to the initial state. (2) With the decrease in temperature and the gradual increase in cohesion, the temperature curve can be divided into a fast-growing section from 0 to −2°C, a slow-growing section from −2 to −8°C, and a second fast-growing section from −8 to −10°C owing to the combined effect of the pressure-thawing action and ice-water phase change. In addition, the rate of decrease in the internal friction angle also shows a similar pattern. (3) The cohesion and the internal friction angle of samples both tend to increase first and then decrease with the rise of the initial moisture content, and the critical initial moisture content is near the optimal moisture content of 15%. (4) Both the cohesion and the internal friction angle of the samples increase with dry density growth. The growth rate of cohesion will gradually increase as the temperature decreases. Moreover, the growth rate of cohesion of low dry density samples is more susceptible to temperature, while the internal friction angle growth rate is not affected by temperature.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lina Wang ◽  
Zhiyu Weng ◽  
Qiang Liu ◽  
Tianliang Wang ◽  
Xuemin Pan ◽  
...  

The traditional treatment of red clay using inorganic materials leads to many serious environmental problems. The study investigates the mechanical properties of red clay using an environmental-friendly material—xanthan gum—through confined compression, direct shear, and scanning electron microscope tests. At the macroscale, xanthan gum content and curing age had obvious effects on the compressibility, presenting the treated red clay was in the category of low compressibility which gradually increased when xanthan gum content exceeded 1.5%. The xanthan gum content and curing age also had significant influences on the cohesion but not on the internal friction angle. The shear strength of red clay can be improved by increasing the cohesion without obviously changing the friction characteristics. After curing for 28 days, the cohesion and internal friction angle of 2.0% xanthan gum-treated soil were effectively improved to 170.44 kPa and 20.56°, which were increased by 69.79% and 9.36°, respectively, compared with untreated red clay. Microscopic analysis indicated that the strengthening mechanism by xanthan gum was derived from changing the arrangement characteristics of soil particles and forming hard biopolymer-red clay matrices. The proper xanthan gum can effectively wrap clay particles and fill pore spaces. However, the extensive stacking of gels would also reduce the effective connection of clay particles and produce local weak points in the soil, resulting in attenuation of mechanical properties. This study enriches the treatment measure of red clay and provides beneficial experiences for biopolymer application on special clay.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bingchao Zhao ◽  
Yunxiang Ma ◽  
Yaxin Guo ◽  
Hao Sun ◽  
Jingbin Wang ◽  
...  

The similar material of collapsible loess is the basis and premise of the experimental study on the surface movement and deformation law of coal seam mining in collapsible loess-covered areas. The orthogonal experiment is used to make up similar material with different proportions using river sand and barite powder as aggregate, clay and gypsum as cementing material, and diatomite as adjusting material. The reasonable proportion of similar material in collapsible loess is studied by using range analysis, similar simulation, and field measurement. The results show that the content of diatomite plays a leading role in the collapsibility coefficient of similar material, and the collapsibility coefficient is positively correlated with the content of diatomite; moisture content is the main control of the cohesion of the material, and cohesion is negatively correlated with the moisture content; the ratio of bone-to-glue has the most significant effect on the internal friction angle, and the internal friction angle is positively correlated with the ratio of bone-to-glue. The reasonable ratio of the similar material in collapsible loess is 8 : 2 of the ratio of bone-to-glue, the ratio of clay-to-gypsum is 9 : 1, the barite powder content is 6%, the diatomite content is 23%, and the moisture content is 13%, and the mechanical parameters of the collapsible loess are 5.3%–6.3% different from the target value of similar material through laboratory tests, which can meet the experimental requirements. It is verified by a similar simulation experiment that the maximum surface subsidence value and the surface fracture width in the simulation results are 6.9% and 7.8% different from the field measured results, indicating a high degree of agreement. The results of the study have important references and guiding significance for the preparation of similar material with similar models.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jianwei Yue ◽  
Limin Zhao ◽  
Baoxi Zhang ◽  
Qingmei Kong ◽  
Siyuan Wang ◽  
...  

The silty clay in the lower reaches of the Yellow River is characterized by loose structure, low strength, and strong capillary effect. Based on the technology of ancient glutinous rice mortar and microbial-induced calcium carbonate precipitation (MICP), experiments on optimal mass ratio of cementitious liquid to bacterial liquid and optimal concentration of cementitious liquid for MICP and improved MICP technology were carried out by measuring the production of CaCO3, and direct shear test and unconfined compressive strength test of plain silt, glutinous mixing silt, and improved silt with MICP and modified MICP were conducted. The microstructure of the reaction products of MICP and improved MICP technology were also evaluated based on scanning electron microscopy (SEM). Research results showed that the mechanical properties of silt with glutinous rice slurry were effectively improved. With the increase in the concentration of glutinous rice slurry, the strength and internal friction angle of soil samples first increased and then decreased, and the cohesion presented a linear increasing trend. When the concentration of cementitious liquid was 0.5 M and the mass ratio of cementitious liquid to bacterial liquid was 2 : 1, the amount of CaCO3 formed was the most, and the conversion rate of Ca2+ was more than 80%. The improved MICP could increase the conversion rate of Ca2+ (93.44%). An improved MICP showed that glutinous rice slurry could improve bacterial activity, increase the urease content in the bacterial solution, and promote the production of CaCO3. Silt cohesion and internal friction angle of the silt were improved by the improved MICP technology, and the strengthening effect of mechanical properties of modified MICP-reinforced soil is better than that of the MICP-reinforced soil; conventional MICP technology could also improve the soil cohesion, but the improvement in the internal friction angle was not obvious. The SEM results indicated that compared with the reaction product of MICP technology, the structure of the product of improved MICP technology is more compact, resulting in a marked reinforcement of MICP performance with glutinous rice slurry. This study provides new insights into enhancing the mechanical behaviour of MICP-treated silt in the Yellow River Basin with glutinous rice slurry.


2021 ◽  
Vol 2118 (1) ◽  
pp. 012011
Author(s):  
D A Zuluaga ◽  
D Sabogal ◽  
C A Buenaventura ◽  
C J Slebi

Abstract The physical response and geotechnical properties of diatomaceous soils are not fully understood, data are sparse, and do not account for the effects of single and multispecies frustule content, origin, type, and variability. The main physical problem lies in the irregular response of diatomaceous soils due to micro and nano scale causes and its unexpected effects on the macro scale. This research compared the characteristics of a multispecies diatomaceous soil sample (North American origin) with other diatomaceous single-species soils. Six artificial soil mixtures were prepared, dosed by weight, in order to determine the influence of the content of frustules. The results show that the liquid limit of the samples is lower than that of the monospecies samples for any content of frustules. The pore areas of the monospecies samples are found to be 4 to 7 times larger than those of the North American soil. Void ratios and compressibility ranges are higher as the diatom content increases. The internal friction angle of diatomaceous soils varies in a non-linear tendency with respect to fossil content. For the studied soil at 100% fossil concentration, the internal friction angle reached 38.32°, a magnitude that is lower than the values reported for most of the monospecies contrast samples.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gang Huang ◽  
Mingxin Zheng

Strength of vegetated coal-bearing soil is of great significance to evaluate the shallow stability of vegetated slopes in coal-bearing soil regions. This paper takes D-W cycles, dry density, water content, and vegetation root (VR) content as four factors and carries out the triaxial test for the orthogonal design of vegetated coal-bearing soil in southern China. The strength curves of vegetated coal-bearing soil under four factors were obtained. The Taguchi method was used to quantitatively analyse the effects of four factors. The microstructure of coal-bearing soil under D-W cycles and the theory of soil reinforcement by VR were discussed. The results indicated that D-W cycles had a significant effect on the cohesion and internal friction angle ( P < 0.05 ). The internal friction angle was little affected by the water content and VR content, which had considerable influence on the cohesion. The cohesion could be improved with less than 2% VR content. The cohesion was the largest for no D-W cycles, 10% water content, and 2% VR content. The links between mineral particles go from a stable layered structure to unsteadiness chain structure with the increase in the number of D-W cycles.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1234
Author(s):  
Yongsheng Yao ◽  
Jue Li ◽  
Chenghao Liang ◽  
Xin Hu

Coarse aggregate is the major part of asphalt mixture, and plays an essential role in mechanical performance of pavement structure. However, the use of poor-quality coarse recycled aggregate (CRA) reduces the strength and stability of the aggregate skeleton. It is a challenge to predict accurately the influence of CRA on the performance of asphalt mixture. In this study, both a uniaxial compression test and a direct tensile test were carried out to evaluate the failure strength of asphalt concrete with four CRA content. The discrete element method (DEM) was applied to simulate the specimen of asphalt concrete considering the distribution and properties of CRA. The results showed that temperature and loading rate have a significant influence on failure strength, especially when the CRA content was more than 20%. With the increase of CRA content, both cohesion force and internal friction angle were gradually weakened. The proposed model can be used to predict the failure strength of asphalt mixture, since both experimental and simulated results had a high consistency and repeatability. With the decrease of CRA strength, the nominal cohesion force of the specimen decreased, while the internal friction angle increased.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 76-84
Author(s):  
Azhani Zukri

Soil replacement technique is the simplest and oldest way in improving the soft soil under the shallow foundations. The process started by taking or removing the un-wanted problematic part of soils and replacing it with other efficient materials. Therefore, this study conducted to analyse on the soft soil replacement using Lightweight Expanded Clay Aggregate (LECA) as a filling material instead of common aggregate. LECA has been widely used in geotechnical application as the materials were successfully recognized in minimising the dead loads by more than half. The settlement magnitude of treated soft soil with LECA replacement was analysed through finite element method by using PLAXIS 2D commercial software. The prediction graph for various internal friction angle has been developed for settlement estimation The graph was then validated using developed Settlement Prediction Model, analytical equations, and numerical analysis. Another finding from this study is a decrease in the magnitude of the settlement as the internal friction angle of LECA increases.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Haiping Shi ◽  
Zhongyao Li ◽  
Wenwei Li ◽  
Shaopeng Wang ◽  
Baotian Wang ◽  
...  

Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.


2021 ◽  
Author(s):  
Jiri Zegzulka ◽  
Jan Necas ◽  
Jiri Rozbroj ◽  
Daniel Gelnar ◽  
Alvaro Gomes ◽  
...  

Abstract Currently, pressure from industry to streamline processes by creating their simulation models, and thus to gradual digitization is increasing. The essence of representative simulation models of bulk materials is to understand the principles and laws of the real behavior of particles. The aim of this study is therefore to find and quantify the possibilities and principles of how particles can change their position relative to other particles. The possibilities of particle displacements were expressed using their specific trajectories and work ratios, or internal friction angle values. This created a new comprehensive model of the internal friction angle of particles independent of particle size. It enables the interpretation of the determined values of the angles of internal friction of particles and its application in the field of simulations of mass and process models. The model can be used to determine the basic composition of particles in volume and the dominant ways of their mutual displacements.


Sign in / Sign up

Export Citation Format

Share Document