scholarly journals The effect of land uses to change on infiltration capacity and surface runoff at latung sub watershed, Padang City Indonesia

2021 ◽  
Vol 331 ◽  
pp. 08002
Author(s):  
Rusli HAR ◽  
Aprisal ◽  
Werry Darta Taifur ◽  
Teguh Haria Aditia Putra

Changes in land use in the Air Dingin watershed (DAS) area in Padang City, Indonesia, lead to a decrease in rainwater infiltration volume to the ground. Some land use in the Latung sub-watershed decrease in infiltration capacity with an increase in surface runoff. This research aims to determine the effect of land-use changes on infiltration capacity and surface runoff. Purposive sampling method was used in this research. The infiltration capacity was measured directly in the field using a double-ring infiltrometer, and the data was processed using the Horton model. The obtained capacity was quantitatively classified using infiltration zoning. Meanwhile, the Hydrologic Engineering Center - Hydrology Modeling System with the Synthetic Unit Hydrograph- Soil Conservation Service -Curve Number method was used to analyze the runoff discharge. The results showed that from the 13 measurement points carried out, the infiltration capacity ranges from 0.082 - 0.70 cm/minute or an average of 0.398 cm/minute, while the rainwater volume is approximately 150,000 m3/hour/km2. Therefore, the soil infiltration capacity in the Latung sub-watershed is in zone VI-B or very low. This condition had an impact on changes in runoff discharge in this area, from 87.84 m3/second in 2010 to 112.8 m3/second in 2020 or a nail of 22.13%. Based on the results, it is concluded that changes in the land led to low soil infiltration capacity, thereby leading to an increase in surface runoff.

2021 ◽  
Vol 004 (01) ◽  
pp. 062-075
Author(s):  
Didit Priambodo ◽  
Ery Suhartanto ◽  
Sumiadi Sumiadi

Lesti watershed is a sub basin of Brantas River located in Malang Regency, which is the main source of inflow and sediment loads for the Sengguruh Dam. Human activities change the type of land cover by deforestation for the expansion of agricultural and residential areas. It makes a rapid increasing of runoff and discharges that were potentially carrying sediment into Lesti River. To measure surface runoff in a watershed can be held by modeling rather than directly in the field, it is cheaper and more effective with accurate results. This study is based on Soil Conservation Service (SCS) formula to illustrate surface runoff level by knowing curve number distribution. Using models based on land use changes in 2010, 2012 and 2017, generated by AV SWAT software, shows that increasing CN value each year affects the surface runoff, so there is a relationship between land use and runoff. The average CN value in 2010 is 63.644, 2012 is 63.942, 2017 is 65.49, while the average surface runoff in 2010 is 800.28, 2012 is 823.26, 2017 is 828.009. Conservation treatment on the area with a high CN value can reduce the surface runoff. It shows that watershed performance is getting better


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2018 ◽  
Vol 626 ◽  
pp. 1394-1401 ◽  
Author(s):  
Di Sun ◽  
Hong Yang ◽  
Dexin Guan ◽  
Ming Yang ◽  
Jiabing Wu ◽  
...  

2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2017 ◽  
Vol 10 (2) ◽  
pp. 233-241
Author(s):  
Franciane Mendonça Dos Santos ◽  
José Augusto Lollo

This study was developed at Caçula stream watershed of Ilha Solteira (Brazil) for potential infiltration estimation based on digital cartography. These methods aim at low-cost and quick analysis processes in order to support the territorial planning. The preliminary potential infiltration chart was produced using ArcHydro and pedological information of the study area. The curve-number method (Soil Conservation Service) was used to determine the potential infiltration combining information related to land-use and soil types in the watershed. We also used a methodology that assumes being possible to evaluate potential infiltration of a watershed combining average annual rainfall, land-use and watershed natural attributes (geomorphology, geology and pedology). Results show that ArcHydro is efficient for a preliminary characterization because it shows flow accumulation areas, allowing higher potential of degradation areas in terms of floods, mass movement and erosion. As land-use classes have significant weight in Soil Conservation Service method assessing potential infiltration, this method allow us to evaluate how land-use changes affect water dynamic in the watershed. The propose based on natural environment attributes enables to determine the homologous infiltration areas based on a higher number of natural characteristics of the area, and thereby obtain a result that is closer to the local conditions and, consequently for degradation surface processes identification.


Author(s):  
Kazimierz Banasik ◽  
Ngoc Pham

Modelling of the effects of land use changes on flood hydrograph in a small catchment of the Płaskowicka, southern part of Warsaw, Poland This study concerns the influence of urbanized trend affected on the flood hydrograph in a small catchment in Warsaw. Based on recorded events a selected procedure for simulation rainfall-runoff process has been accepted for flood estimation. The Soil Conservation Services Curve Number method (SCS-CN) and empirical formulae for Nash model parameters, developed by Rao at al. were used to analyze the nine selected events from 2007 to 2009. The analysis confirmed usefulness of the selected procedure, implicated in a home developed computer program, for estimating flood hydrographs as responses of the small urban catchment to heavy rainfall events. Flood hydrographs were estimated for three various stages of land use. The results demonstrate that the peak flood flow would increase over eight times due to urbanisation of the catchment.


2014 ◽  
Vol 6 (3) ◽  
Author(s):  
Costache Romulus ◽  
Fontanine Iulia ◽  
Corodescu Ema

AbstractSǎrǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in Sǎrǎţel catchment, between 1990–2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.


Author(s):  
Sharif Moniruzzaman SHIRAZI ◽  
MD Ibrahim ADHAM ◽  
Faridah OTHMAN ◽  
Noorul Hasan ZARDARI ◽  
Zubaidah ISMAIL

This study is focused to identify the surface runoff trends and potentiality of the five watersheds transforming the discrete runoff pattern to smooth patterns. Runoff potentiality was analyzed by Soil Conservation Service Curve Number (SCS-CN) technique. Considering Hydrologic Soil Group (HSG) and percentage of particular land use pattern, weighted cns of five watersheds were found between 82 and 85. Monthly surface runoff trends were investigated by statistical autocorrelation, Mann-Kendall, Sen slope and lowess methods. According to the Mann-Kendall method, no statistical significant monotonic trends were found for all the watersheds. Smoothing curve analysis reveals that the monthly mean runoff is 30 mm, 34 mm, 39 mm, 28 mm and 37 mm and the percentage of runoff is 23%, 25%, 31%, 25% and 26% for the watersheds 1, 2, 3, 4 and 5, respectively. Degree of effect of several land use pattern with corresponding soil type was analyzed to assess the total runoff volume for contributing to the surface water resources. Result shows that 26% of the rainwater contributes to the surface runoff of Melaka Tengah catchment and provides the information for planning of surface water management and potentiality of groundwater recharge.


Sign in / Sign up

Export Citation Format

Share Document