scholarly journals Flow feature of a pair of in-line forced oscillating 45 degrees staggered arranged circular cylinders

2015 ◽  
Vol 92 ◽  
pp. 02116 ◽  
Author(s):  
Y. Yokoi ◽  
K. Hirao
2011 ◽  
Vol 42 (7) ◽  
pp. 595-612
Author(s):  
Masome Heidary ◽  
Mousa Farhadi ◽  
Kurosh Sedighi ◽  
Mostafa Nourollahi

Author(s):  
Carmen Popa ◽  
Violeta Anghelina ◽  
Octavian Munteanu

Abstract The descriptive geometry constitues the foundation of the engineering sciences, so necessary to the specialists of this field. The aim of this paper is to establish the intersection curve between two cylinders and their unfoldings, by using the programmes:AutoCAD and Mathematica. We used the classical method and we first establish the intersection curve and then the cylinders unfoldings. To do this, we used the AutoCAD program. The same unfoldings can be obtained by introducing directly the curve equations (which are inferred) in Mathematica program.


1990 ◽  
Vol 10 (1Supplement) ◽  
pp. 35-40 ◽  
Author(s):  
Kazuo OHMI ◽  
Kensaku IMAICHI ◽  
Ei-ichi TADA

2020 ◽  
Vol 224 (2) ◽  
pp. 961-972
Author(s):  
A G Semple ◽  
A Lenardic

SUMMARY Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.


Sign in / Sign up

Export Citation Format

Share Document