scholarly journals Distributed Computing for Small Experiments

2018 ◽  
Vol 182 ◽  
pp. 02010
Author(s):  
Daniela Bauer

The large Large Hadron Collider experiments have successfully used distributed computing for years. The same infrastructure yields large opportunistic resources for smaller collaborations. In addition, some national grid initiatives make dedicated resources for small collaborations available. This article presents an overview of the services available and how to access them, including an example of how small collaborations have successfully incorporated distributed computing into their workflows.

2019 ◽  
Vol 214 ◽  
pp. 03049
Author(s):  
Fernando Barreiro Magino ◽  
David Cameron ◽  
Alessandro Di Girolamo ◽  
Andrej Filipcic ◽  
Ivan Glushkov ◽  
...  

ATLAS is one of the four experiments collecting data from the proton-proton collisions at the Large Hadron Collider. The offline processing and storage of the data is handled by a custom heterogenous distributed computing system. This paper summarizes some of the challenges and operations-driven solutions introduced in the system.


2021 ◽  
Vol 251 ◽  
pp. 03061
Author(s):  
Gordon Watts

Array operations are one of the most concise ways of expressing common filtering and simple aggregation operations that are the hallmark of a particle physics analysis: selection, filtering, basic vector operations, and filling histograms. The High Luminosity run of the Large Hadron Collider (HL-LHC), scheduled to start in 2026, will require physicists to regularly skim datasets that are over a PB in size, and repeatedly run over datasets that are 100’s of TB’s – too big to fit in memory. Declarative programming techniques are a way of separating the intent of the physicist from the mechanics of finding the data and using distributed computing to process and make histograms. This paper describes a library that implements a declarative distributed framework based on array programming. This prototype library provides a framework for different sub-systems to cooperate in producing plots via plug-in’s. This prototype has a ServiceX data-delivery sub-system and an awkward array sub-system cooperating to generate requested data or plots. The ServiceX system runs against ATLAS xAOD data and flat ROOT TTree’s and awkward on the columnar data produced by ServiceX.


Author(s):  
D. Colling ◽  
D. Britton ◽  
J. Gordon ◽  
S. Lloyd ◽  
A. Doyle ◽  
...  

The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract In this work we study the collider phenomenology of color-octet scalars (sgluons) in minimal supersymmetric models endowed with a global continuous R symmetry. We systematically catalog the significant decay channels of scalar and pseudoscalar sgluons and identify novel features that are natural in these models. These include decays in nonstandard diboson channels, such as to a gluon and a photon; three-body decays with considerable branching fractions; and long-lived particles with displaced vertex signatures. We also discuss the single and pair production of these particles and show that they can evade existing constraints from the Large Hadron Collider, to varying extents, in large regions of reasonable parameter space. We find, for instance, that a 725 GeV scalar and a 350 GeV or lighter pseudoscalar can still be accommodated in realistic scenarios.


Author(s):  
S. A. Antipov ◽  
N. Biancacci ◽  
J. Komppula ◽  
E. Métral ◽  
B. Salvant ◽  
...  

Author(s):  
T. E. Levens ◽  
K. Łasocha ◽  
T. Lefevre ◽  
M. Gąsior ◽  
R. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document