scholarly journals Sub-cycle Manipulation of Electrons in a Tunnel Junction with Phase-controlled Single-cycle THz Near-fields

2019 ◽  
Vol 205 ◽  
pp. 08007
Author(s):  
Katsumasa Yoshioka ◽  
Ikufumi Katayama ◽  
Yusuke Arashida ◽  
Atsuhiko Ban ◽  
Yoichi Kawada ◽  
...  

By utilizing terahertz scanning tunneling microscopy (THz-STM) with a carrier envelope phase shifter for broadband THz pulses, we could successfully control the near-field-mediated electron dynamics in a tunnel junction with sub-cycle precision. Measurements of the phase-resolved sub-cycle electron tunneling dynamics revealed an unexpected large carrier-envelope phase shift between far-field and near-field single-cycle THz waveforms.

Nano Letters ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 5198-5204 ◽  
Author(s):  
Katsumasa Yoshioka ◽  
Ikufumi Katayama ◽  
Yusuke Arashida ◽  
Atsuhiko Ban ◽  
Yoichi Kawada ◽  
...  

Nanophotonics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 1503-1516 ◽  
Author(s):  
Kai Braun ◽  
Florian Laible ◽  
Otto Hauler ◽  
Xiao Wang ◽  
Anlian Pan ◽  
...  

AbstractIn this review, we focus on the experimental demonstration of enhanced emission from single plasmonic tunneling junctions consisting of coupled nano antennas or noble metal tips on metallic substrates in scanning tunneling microscopy. Electromagnetic coupling between resonant plasmonic oscillations of two closely spaced noble metal particles leads to a strongly enhanced optical near field in the gap between. Electron beam lithography or wet chemical synthesis enables accurate control of the shape, aspect ratio, and gap size of the structures, which determines the spectral shape, position, and width of the plasmonic resonances. Many emerging nano-photonic technologies depend on the careful control of such localized resonances, including optical nano antennas for high-sensitivity sensors, nanoscale control of active devices, and improved photovoltaic devices. The results discussed here show how optical enhancement inside the plasmonic cavity can be further increased by a stronger localization via tunneling. Inelastic electron tunneling emission from a plasmonic junction allows for new analytical applications. Furthermore, the reviewed concepts represent the basis for novel ultra-small, fast, optically, and electronically switchable devices and could find applications in high-speed signal processing and optical telecommunications.


1994 ◽  
Vol 332 ◽  
Author(s):  
S.M. Lindsay ◽  
J. Pan ◽  
T.W. Jing

ABSTRACTWe use electrochemical methods to control the adsorption of molecules onto an electrode for imaging in-situ by scanning tunneling microscopy. Measurements of the barrier for electron tunneling show that the mechanism of electron transfer differs from vacuum tunneling. Barriers depend upon the direction of electron tunneling, indicating the presence of permanently aligned dipoles in the tunnel gap. We attribute a sharp dip in the barrier near zero field to induced polarization. We propose a ‘tunneling’ process consisting of two parts: One is delocalization of quantum-coherent states in parts of the molecular adlayer that hybridize strongly (interaction ≥ kT) with Bloch states in the metal. This gives rise to a quantum-point-contact conductance, Gc ≤ 2e2/h at a height zo. The other part comes from the exponential decay of the tails of localized states, G = Gc exp{−2K(z − z0)}. Because measured decay lengths, (2K‘)−1, are small (≈ 1 Å), STM contrast is dominated by the contour along which G[z0 (x,y)] = Gc. Measured changes in z0 are used to calculate images which are in reasonable agreement with observations. We illustrate this with images of synthetic DNA oligomers.


Science ◽  
2019 ◽  
Vol 367 (6476) ◽  
pp. 411-415 ◽  
Author(s):  
M. Garg ◽  
K. Kern

Nanoelectronic devices operating in the quantum regime require coherent manipulation and control over electrons at atomic length and time scales. We demonstrate coherent control over electrons in a tunnel junction of a scanning tunneling microscope by means of precise tuning of the carrier-envelope phase of two-cycle long (<6-femtosecond) optical pulses. We explore photon and field-driven tunneling, two different regimes of interaction of optical pulses with the tunnel junction, and demonstrate a transition from one regime to the other. Our results show that it is possible to induce, track, and control electronic current at atomic scales with subfemtosecond resolution, providing a route to develop petahertz coherent nanoelectronics and microscopy.


1995 ◽  
Vol 66 (9) ◽  
pp. 1141-1143 ◽  
Author(s):  
M. W. J. Prins ◽  
R. H. M. Groeneveld ◽  
D. L. Abraham ◽  
H. van Kempen ◽  
H. W. van Kesteren

2021 ◽  
Vol 2015 (1) ◽  
pp. 012139
Author(s):  
V A Shkoldin ◽  
D V Lebedev ◽  
A M Mozharov ◽  
D V Permyakov ◽  
L N Dvoretckaia ◽  
...  

Abstract Using of inelastic electron tunnelling is very promising approach to study of subwavelength photons and plasmons sources. Such sources are very important for improving of on-chip data processing. One of the ways for development of efficient and compact optical electrically-driven sources is using of nanoantenna placed into the tunnel junction. In this work, singe optical nanoantenna was investigated under ultra-high vacuum and ambient conditions. Photon maps of nanoantenna excited under scanning tunnel microscope tip was observed and the obtained results was compared with the theoretical predictions of electromagnetic near-field distribution.


Sign in / Sign up

Export Citation Format

Share Document