scholarly journals Recent Results from the Antares Neutrino Telescope

2019 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Antoine Kouchner

Antares, the first undersea neutrino telescope, has been continuously operating since 2007 in the Mediterranean Sea. The transparency of the water allows for a very good angular resolution in the reconstruction of neutrino events of all flavors. This results in an unmatched sensitivity for neutrino source searches, in a large fraction of the Southern Sky, at TeV energies. As a consequence, Antares provides valuable constraints on the origin of the cosmic neutrino flux discovered by the IceCube Collaboration. Based on an all-flavor dataset spanning nine years of operation of the detector, the latest results of Antares searches for neutrino point sources, and for diffuse neutrino emission from the entire sky as well as from several interesting regions such as the Galactic Plane, are presented. Several results have been obtained through a joint analysis with the IceCube Collaboration. Concerning the multi-messenger program, the focus is made on the follow-up searches of IceCube alerts, in particular the one related to the TXS 0506+056 blazar, thought to be the first extragalactic high-energy neutrino source identified so far.

2012 ◽  
Vol 08 ◽  
pp. 307-310
Author(s):  
C. BIGONGIARI

ANTARES is the first undersea neutrino detector ever built and presently the neutrino telescope with the largest effective area operating in the Northern Hemisphere. A three-dimensional array of photomultiplier tubes detects the Cherenkov light induced by the muons produced in the interaction of high energy neutrinos with the matter surrounding the detector. The detection of astronomical neutrino sources is one of the main goals of ANTARES. The search for point-like neutrino sources with the ANTARES telescope is described and the preliminary results obtained with data collected from 2007 to 2010 are shown. No cosmic neutrino source has been observed and neutrino flux upper limits have been calculated for the most promising source candidates.


2019 ◽  
Vol 210 ◽  
pp. 03004
Author(s):  
Agustín Sánchez Losa

The ANTARES detector is currently the largest undersea neutrino telescope. Located in the Mediterranean Sea at a depth of 2.5 km, 40 km off the Southern coast of France, it has been looking for cosmic neutrinos for more than 10 years. High-energy cosmic neutrino production is strongly linked with cosmic ray production. The latest results from IceCube Collaboration represent a step forward towards the confirmation of a highenergy cosmic ray source. The ANTARES location in the Northern Hemisphere is optimal for the observation of most of the Galactic Plane, including the Galactic Center. It has constrained the IceCube neutrino excess reports as well as, more recently, the flux from the source identified in the Blazar TXS 0506+056. The latest results of ANTARES on such analyses, including point-like and extended sources, diffuse fluxes, transient phenomena and multi-messenger studies, are presented.


2019 ◽  
Vol 216 ◽  
pp. 01004
Author(s):  
Véronique Van Elewyck

The ANTARES detector has been operating continuously since 2007 in the Mediterranean Sea, demonstrating the feasibility of an undersea neutrino telescope. Its superior angular resolution in the reconstruction of neutrino events of all flavors results in unprecedented sensitivity for neutrino source searches in the southern sky at TeV energies, so that valuable constraints can be set on the origin of the cosmic neutrino flux discovered by theIceCube detector. The next generation KM3NeT neutrino telescope is now under construction, featuring two detectors with the same technology but different granularity: ARCA designed to search for high energy (TeV-PeV) cosmic neutrinos and ORCA designed to study atmospheric neutrino oscillations at the GeV scale, focusing on the determination of the neutrino mass hierarchy. Both detectors use acoustic devices for positioning calibration, and provide testbeds for acoustic neutrino detection.


2019 ◽  
Vol 207 ◽  
pp. 01002
Author(s):  
Ignacio Taboada

Cosmic rays and neutrinos are intimately related. And though TeVPeV astrophysical neutrinos have been observed, their sources and their relation to potential sources of cosmic rays remain unknown. Recently, the blazar TXS 0506+056 has been identified as a candidate neutrino source. In parallel, IceCube has conducted numerous searches for other potential neutrino neutrino sources. These proceedings are limited in scope, given the large breath of science results by IceCube: A description of the astrophysical neutrino flux; a review of the real-time program that enables multi-messenger follow-up of neutrinos; a summary of the observations of TXS 0506+056; a recap of the search for neutrino point sources with 7 years of IceCube data; an account of the tantalizing capabilities of IceCube and ANTARES to detect Milky Way neutrinos and a description of a method to identify Glashow resonance events.


2009 ◽  
Vol 18 (10) ◽  
pp. 1615-1619
Author(s):  
◽  
MAURIZIO SPURIO

ANTARES is a neutrino telescope under the Mediterranean Sea, in a site 40 km off the French coast at a depth of 2475 m. It is an array of 12 lines equipped with 884 photomultipliers. The detection mechanism relies on the observation of the Cherenkov light emitted by charged leptons produced by neutrinos interacting in the water and ground surrounding the detector. First studies of the detector performances and preliminary results on reconstruction of atmospheric muons and neutrinos are presented, with the expected sensitivity for a diffuse flux of high energy neutrinos.


2018 ◽  
Vol 616 ◽  
pp. A132 ◽  
Author(s):  
R. Lallement ◽  
L. Capitanio ◽  
L. Ruiz-Dern ◽  
C. Danielski ◽  
C. Babusiaux ◽  
...  

Context. Gaia data and stellar surveys open the way to the construction of detailed 3D maps of the Galactic interstellar (IS) dust based on the synthesis of star distances and extinctions. Dust maps are tools of broad use, also for Gaia-related Milky Way studies. Aims. Reliable extinction measurements require very accurate photometric calibrations. We show the first step of an iterative process linking 3D dust maps and photometric calibrations, and improving them simultaneously. Methods. Our previous 3D map of nearby IS dust was used to select low-reddening SDSS/APOGEE-DR14 red giants, and this database served for an empirical effective temperature- and metallicity-dependent photometric calibration in the Gaia G and 2MASS Ks bands. This calibration has been combined with Gaia G-band empirical extinction coefficients recently published, G, J, and Ks photometry and APOGEE atmospheric parameters to derive the extinction of a large fraction of the survey targets. Distances were estimated independently using isochrones and the magnitude-independent extinction KJ−Ks. This new dataset has been merged with the one used for the earlier version of dust map. A new Bayesian inversion of distance-extinction pairs has been performed to produce an updated 3D map. Results. We present several properties of the new map. A comparison with 2D dust emission reveals that all large dust shells seen in emission at middle and high latitudes are closer than 300 pc. The updated distribution constrains the well-debated, X-ray bright North Polar Spur to originate beyond 800 pc. We use the Orion region to illustrate additional details and distant clouds. On the large scale the map reveals a complex structure of the Local Arm. Chains of clouds of 2–3 kpc in length appear in planes tilted by ≃15° with respect to the Galactic plane. A series of cavities oriented along a l ≃ 60–240° axis crosses the Arm. Conclusions. The results illustrate the ongoing synergy between 3D mapping of IS dust and stellar calibrations in the context of Gaia. Dust maps provide prior foregrounds for future calibrations appropriate to different target characteristics or ranges of extinction, allowing us in turn to increase extinction data and produce more detailed and extended maps.


2011 ◽  
Vol 743 (1) ◽  
pp. L14 ◽  
Author(s):  
S. Adrián-Martínez ◽  
J. A. Aguilar ◽  
I. Al Samarai ◽  
A. Albert ◽  
M. André ◽  
...  

2005 ◽  
Vol 20 (14) ◽  
pp. 3096-3098 ◽  
Author(s):  
◽  
ANDREA SILVESTRI

We present recent results from the Antarctic Muon And Neutrino Detector Array (AMANDA), located at the South Pole in Antarctica. AMANDA-II, commissioned in 2000, is a multipurpose high energy neutrino telescope with a broad physics and astrophysics scope. We summarize the results from searches for a variety of sources of ultra-high energy neutrinos: TeV-PeV diffuse sources by measuring either muon tracks or cascades, neutrinos in excess of PeV by searching for muons traveling in the down-going direction and point sources.


Sign in / Sign up

Export Citation Format

Share Document