scholarly journals Latest results on high-energy cosmic neutrino searches with the ANTARES neutrino telescope

2019 ◽  
Vol 210 ◽  
pp. 03004
Author(s):  
Agustín Sánchez Losa

The ANTARES detector is currently the largest undersea neutrino telescope. Located in the Mediterranean Sea at a depth of 2.5 km, 40 km off the Southern coast of France, it has been looking for cosmic neutrinos for more than 10 years. High-energy cosmic neutrino production is strongly linked with cosmic ray production. The latest results from IceCube Collaboration represent a step forward towards the confirmation of a highenergy cosmic ray source. The ANTARES location in the Northern Hemisphere is optimal for the observation of most of the Galactic Plane, including the Galactic Center. It has constrained the IceCube neutrino excess reports as well as, more recently, the flux from the source identified in the Blazar TXS 0506+056. The latest results of ANTARES on such analyses, including point-like and extended sources, diffuse fluxes, transient phenomena and multi-messenger studies, are presented.

2019 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Antoine Kouchner

Antares, the first undersea neutrino telescope, has been continuously operating since 2007 in the Mediterranean Sea. The transparency of the water allows for a very good angular resolution in the reconstruction of neutrino events of all flavors. This results in an unmatched sensitivity for neutrino source searches, in a large fraction of the Southern Sky, at TeV energies. As a consequence, Antares provides valuable constraints on the origin of the cosmic neutrino flux discovered by the IceCube Collaboration. Based on an all-flavor dataset spanning nine years of operation of the detector, the latest results of Antares searches for neutrino point sources, and for diffuse neutrino emission from the entire sky as well as from several interesting regions such as the Galactic Plane, are presented. Several results have been obtained through a joint analysis with the IceCube Collaboration. Concerning the multi-messenger program, the focus is made on the follow-up searches of IceCube alerts, in particular the one related to the TXS 0506+056 blazar, thought to be the first extragalactic high-energy neutrino source identified so far.


2012 ◽  
Vol 08 ◽  
pp. 307-310
Author(s):  
C. BIGONGIARI

ANTARES is the first undersea neutrino detector ever built and presently the neutrino telescope with the largest effective area operating in the Northern Hemisphere. A three-dimensional array of photomultiplier tubes detects the Cherenkov light induced by the muons produced in the interaction of high energy neutrinos with the matter surrounding the detector. The detection of astronomical neutrino sources is one of the main goals of ANTARES. The search for point-like neutrino sources with the ANTARES telescope is described and the preliminary results obtained with data collected from 2007 to 2010 are shown. No cosmic neutrino source has been observed and neutrino flux upper limits have been calculated for the most promising source candidates.


2018 ◽  
Vol 612 ◽  
pp. A1 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2–100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe.


1996 ◽  
Vol 11 (19) ◽  
pp. 3393-3413 ◽  
Author(s):  
S. BARWICK ◽  
F. HALZEN ◽  
P.B. PRICE

It is hoped that in the near future, neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach throughout and beyond our galaxy and make measurements relevant to cosmology, astrophysics, cosmic-ray physics and particle physics. The construction of a high-energy neutrino telescope requires a huge volume of very transparent, deeply buried material, such as ocean water or ice, which acts as the medium for detecting the particles. The AMANDA1 muon and neutrino telescope, now operating four strings of photomultiplier tubes buried in deep ice at the South Pole, is scheduled to be expanded to a ten-string array. The data collected over the first two years cover the three basic modes in which such instruments are operated: (i) the burst mode which monitors the sky for supernovae, (ii) the detection of electromagnetic showers initiated by PeV-energy cosmic electron neutrinos, and (iii) muon trajectory reconstruction for neutrino and gamma-ray astronomy. We speculate on the possible architectures of kilometer-scale instruments, using early data as a guideline.


2021 ◽  
Vol 923 (1) ◽  
pp. 24
Author(s):  
Nanase Harada ◽  
Sergio Martín ◽  
Jeffrey G. Mangum ◽  
Kazushi Sakamoto ◽  
Sebastien Muller ◽  
...  

Abstract Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1−0) integrated intensity shows its association with “superbubbles,” cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∼10–150, and the fractional abundance of HOC+ relative to H2 is ∼1.5 × 10−11–6 × 10−10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 ≳ 103 if the maximum visual extinction is ≳5, or a cosmic-ray ionization rate of ζ ≳ 10−14 s−1 (3–4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.


2021 ◽  
Author(s):  
Yang Chen ◽  
Xiao Zhang

Abstract In the gamma-ray sky, the highest fluxes come from Galactic sources: supernova remnants (SNRs), pulsars and pulsar wind nebulae, star forming regions, binaries and micro-quasars, giant molecular clouds, Galactic center, and the large extended area around the Galactic plane. The radiation mechanisms of -ray emission and the physics of the emitting particles, such as the origin, acceleration, and propagation, are of very high astrophysical significance. A variety of theoretical models have been suggested for the relevant physics and emission with energies E_1014 eV are expected to be crucial in testing them. In particular, this energy band is a direct window to test at which maximum energy a particle can be accelerated in the Galactic sources and whether the most probable source candidates such as Galactic center and SNRs are “PeVatrons”. Designed aiming at the very high energy (VHE, >100 GeV) observation, LHAASO will be a very powerful instrument in these astrophysical studies. Over the past decade, great advances have been made in the VHE -ray astronomy. More than 170 VHE -ray sources have been observed, and among them, 42 Galactic sources fall in the LHAASO field-of-view. With a sensitivity of 10 milli-Crab, LHAASO can not only provide accurate spectrum for the known -ray sources, but also search new TeV -ray sources. In the following sub-sections, the observation of all the Galactic sources with LHAASO will be discussed in details.


2005 ◽  
Vol 20 (06) ◽  
pp. 1132-1139
Author(s):  
HAIM GOLDBERG

High energy cosmic ray experiments have identified an excess from the region of the Galactic Plane in a limited energy range around 1018 eV ( EeV ). This is very suggestive of neutrons as candidate primaries, because the directional signal requires relatively-stable neutral primaries, and time-dilated neutrons can reach Earth from typical Galactic distances when the neutron energy exceeds an EeV . We here point out that if the Galactic messengers are neutrons, then those with energies below an EeV will decay in flight, providing a flux of cosmic antineutrinos above a TeV which is observable at a kilometer-scale neutrino observatory. The expected event rate per year above 1 TeV in a detector such as IceCube, for example, is 20 antineutrino showers (all flavors) and a 1° directional signal of [Formula: see text] events. A measurement of this flux can serve to identify the first extraterrestrial point source of TeV antineutrinos.


Sign in / Sign up

Export Citation Format

Share Document