scholarly journals The Cherenkov Telescope Array Science Goals and Current Status

2019 ◽  
Vol 209 ◽  
pp. 01038 ◽  
Author(s):  
The CTA Consortium ◽  
Rene A. Ong

The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project.

Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 20 ◽  
Author(s):  
Markus Böttcher

This review provides an overview of recent advances in multi-wavelength and multi-messenger observations of blazars, the current status of theoretical models for blazar emission, and prospects for future facilities. The discussion of observational results will focus on advances made possible through the Fermi Gamma-Ray Space Telescope and ground-based gamma-ray observatories (H.E.S.S., MAGIC, VERITAS), as well as the recent first evidence for a blazar being a source of IceCube neutrinos. The main focus of this review will be the discussion of our current theoretical understanding of blazar multi-wavelength and multi-messenger emission, in the spectral, time, and polarization domains. Future progress will be expected in particular through the development of the first X-ray polarimeter, IXPE, and the installation of the Cherenkov Telescope Array (CTA), both expected to become operational in the early to mid 2020s.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 337-339
Author(s):  
Elisabete M. de Gouveia Dal Pino

AbstractGamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. The Cherenkov Telescope Array (CTA) is an international initiative to build the next-generation ground-based gamma-ray observatory which will have a factor of 5-10 improvement in sensitivity in the 100 GeV - 10 TeV range and an extension to energies well below 100 GeV and above 100 TeV. CTA is planned to consist of two arrays (one in the North and another in the South Hemisphere) and will provide the deepest insight ever reached into the non-thermal high-energy Universe and its particle accelerators.


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


2016 ◽  
Author(s):  
J. L. Dournaux ◽  
A. Abchiche ◽  
D. Allan ◽  
J. P. Amans ◽  
T. P. Armstrong ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 01021
Author(s):  
María Isabel Bernardos ◽  
María Benito ◽  
Fabio Iocco ◽  
Salvatore Mangano ◽  
Olga Sergijenko ◽  
...  

The Large Magellanic Cloud (LMC) is a spiral galaxy, satellite of the Milky way with a high star formation activity. It represents a unique laboratory for studying an extended and spatially resolved star-forming galaxy through gamma-ray observatories. Therefore, the LMC survey is one of the key science projects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory. In this document we present the work performed over the last year by the CTA working group dedicated to the LMC, in order to offer a first characterization of the LMC at TeV energies. We have performed detectability forecasts based on the expected CTA performance for all sources in the region of interest of the LMC with known emission at GeV energies and above. Based on previous observations made by Fermi-LAT and H.E.S.S. we have characterized all point sources, extended sources and diffuse emission produced by cosmic-ray propagation, extrapolating their spectra to CTA energies. Finally, we have characterized the signal expected by different annihilation mechanisms of dark matter (DM) particles within the LMC, computing the detection sensitivity curve for this target in the cross-section-to-mass plane.


2017 ◽  
Author(s):  
Alessandro Costa ◽  
Eva Sciacca ◽  
Fabio Vitello ◽  
Ugo Becciani ◽  
Pietro Massimino ◽  
...  

The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user interfaces. The science gateway and the interactive desktop environment are connected to the authentication and authorization infrastructure composed by a Shibboleth identity provider and a Grouper authorization solution. The Grouper released attributes are consumed by the science gateway to authorize the access to specific web resources and the role management mechanism in Liferay provides the attribute-role mapping.


Sign in / Sign up

Export Citation Format

Share Document