scholarly journals Progress in Multi-Wavelength and Multi-Messenger Observations of Blazars and Theoretical Challenges

Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 20 ◽  
Author(s):  
Markus Böttcher

This review provides an overview of recent advances in multi-wavelength and multi-messenger observations of blazars, the current status of theoretical models for blazar emission, and prospects for future facilities. The discussion of observational results will focus on advances made possible through the Fermi Gamma-Ray Space Telescope and ground-based gamma-ray observatories (H.E.S.S., MAGIC, VERITAS), as well as the recent first evidence for a blazar being a source of IceCube neutrinos. The main focus of this review will be the discussion of our current theoretical understanding of blazar multi-wavelength and multi-messenger emission, in the spectral, time, and polarization domains. Future progress will be expected in particular through the development of the first X-ray polarimeter, IXPE, and the installation of the Cherenkov Telescope Array (CTA), both expected to become operational in the early to mid 2020s.

2019 ◽  
Vol 209 ◽  
pp. 01038 ◽  
Author(s):  
The CTA Consortium ◽  
Rene A. Ong

The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project.


2018 ◽  
Vol 612 ◽  
pp. A10 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Context. Microquasars are potential γ-ray emitters. Indications of transient episodes of γ-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional γ-ray-emitting microquasars is required to better understand how γ-ray emission can be produced in these systems.Aim. Theoretical models have predicted very high-energy (VHE) γ-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the γ-ray and X-ray bands.Methods. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE γ-ray upper limits from contemporaneous H.E.S.S. observations were derived.Results. No significant γ-ray signal has been detected in any of the three systems. The integral γ-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 × 10−13 cm−2 s−1, I(>560 GeV ) < 1.2 × 10−12 cm−2 s−1, and I(>240 GeV) < 4.5 × 10−12 cm−2 s−1 for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively.Conclusions. The γ-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping γ-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE γ-ray emission from microquasars is commonplace, then it is likely to be highly transient.


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (&gt;100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


2016 ◽  
Author(s):  
J. L. Dournaux ◽  
A. Abchiche ◽  
D. Allan ◽  
J. P. Amans ◽  
T. P. Armstrong ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 01021
Author(s):  
María Isabel Bernardos ◽  
María Benito ◽  
Fabio Iocco ◽  
Salvatore Mangano ◽  
Olga Sergijenko ◽  
...  

The Large Magellanic Cloud (LMC) is a spiral galaxy, satellite of the Milky way with a high star formation activity. It represents a unique laboratory for studying an extended and spatially resolved star-forming galaxy through gamma-ray observatories. Therefore, the LMC survey is one of the key science projects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory. In this document we present the work performed over the last year by the CTA working group dedicated to the LMC, in order to offer a first characterization of the LMC at TeV energies. We have performed detectability forecasts based on the expected CTA performance for all sources in the region of interest of the LMC with known emission at GeV energies and above. Based on previous observations made by Fermi-LAT and H.E.S.S. we have characterized all point sources, extended sources and diffuse emission produced by cosmic-ray propagation, extrapolating their spectra to CTA energies. Finally, we have characterized the signal expected by different annihilation mechanisms of dark matter (DM) particles within the LMC, computing the detection sensitivity curve for this target in the cross-section-to-mass plane.


2019 ◽  
Vol 622 ◽  
pp. A211 ◽  
Author(s):  
Francesco Coti Zelati ◽  
Alessandro Papitto ◽  
Domitilla de Martino ◽  
David A. H. Buckley ◽  
Alida Odendaal ◽  
...  

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4−650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of ∼20.1 (3300–10500 Å). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3–79 keV) spectrum was adequately described by an absorbed power law model with photon index of Γ = 1.63  ±  0.01 (at 1σ c.l.), and the X-ray luminosity was (2.16  ±  0.04)  ×  1034 erg s−1 for a distance of 4 kpc. Based on observations with different instruments, the X-ray luminosity has remained relatively steady over the past ∼15 years. J1109 is spatially associated with the gamma-ray source FL8Y J1109.8−6500, which was detected with Fermi at an average luminosity of (1.5  ±  0.2)  ×  1034 erg s−1 (assuming the distance of J1109) over the 0.1–300 GeV energy band between 2008 and 2016. The source was undetected during ATCA radio observations that were simultaneous with NuSTAR, down to a 3σ flux upper limit of 18 μJy beam−1 (at 7.25 GHz). We show that the phenomenological properties of J1109 point to a binary transitional pulsar candidate currently in a sub-luminous accretion disk state, and that the upper limits derived for the radio emission are consistent with the expected radio luminosity for accreting neutron stars at similar X-ray luminosities.


1981 ◽  
Vol 95 ◽  
pp. 241-250 ◽  
Author(s):  
R. Buccheri

Measurements of pulsars in the energy domain above ~ 1 keV have provided in the last few years new and interesting results. This paper presents a review of the observational features of PSR 0531+21 and PSR 0833–45 (the Crab and Vela pulsars). Searches for pulsed emission from old radio pulsars in the same energy domain are also reviewed and results assessed. The comparison of the observed features with each other and with the corresponding features observed at lower energies reveals similarities and differences capable to constrain theoretical models with special regard to the geometry of the emission mechanisms.


1990 ◽  
Vol 115 ◽  
pp. 70-77
Author(s):  
P. Mészáros

AbstractThe effect of strong magnetic fields (B ≳ 1011Gauss) upon various atomic line emission mechanisms in the X-ray range is considered, in particular for H and H-like or He-like ions, and a discussion of the detectability and significance of possible measurements is given. The cyclotron mechanism, the one- and two-photon scattering and the bremsstrahlung effects in a strong B are reviewed, as well as the role they play in determining X-ray spectra. These considerations are applied to typical models of X-ray pulsars and Gamma-ray bursters, contrasting observations of magnetic related features to the present theoretical understanding of these objects.


2012 ◽  
Vol 8 (S291) ◽  
pp. 322-322 ◽  
Author(s):  
Walid Majid

AbstractWe are currently undertaking a monitoring campaign with NASA 70-m antennas to capture a large sample of Crab Giant Pulses (CGP) at multiple radio wavelengths. The goal of this campaign is to carry out a correlation study of CGPs at radio frequencies with pulsed emission from the Crab pulsar with Fermi photons at X-ray. After a year of this study, we expect around 200 Fermi photons to coincide with a CGP radio-frequency detection, allowing us to either confirm a predicted correlation in average gamma-ray pulsed flux increase with GP emission, or place a tight upper limit, at least a factor of 10 more constraining than previous work. We will report on the status of this campaign and will present our preliminary results and prospects for future improvements in receivers and back-end instrumentation.


Sign in / Sign up

Export Citation Format

Share Document