scholarly journals The Crab nebula variability at short time-scales with the Cherenkov telescope array

2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.

2020 ◽  
Vol 635 ◽  
pp. A158 ◽  
Author(s):  
◽  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Arbet Engels ◽  
...  

Aims. We measure the Crab Nebula γ-ray spectral energy distribution in the ~100 TeV energy domain and test the validity of existing leptonic emission models at these high energies. Methods. We used the novel very large zenith angle observations with the MAGIC telescope system to increase the collection area above 10 TeV. We also developed an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements. Results. We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only ~ 56 h of observations, we detect the γ-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV γ-ray signal.


2019 ◽  
Vol 492 (1) ◽  
pp. 708-718 ◽  
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
R Zanin ◽  
D F Torres ◽  
L Tibaldo

ABSTRACT The Cherenkov Telescope Array (CTA) will be the next generation instrument for the very high energy gamma-ray astrophysics domain. With its enhanced sensitivity in comparison with the current facilities, CTA is expected to shed light on a varied population of sources. In particular, we will achieve a deeper knowledge of the Crab nebula and pulsar, which are the best characterized pulsar wind nebula and rotation powered pulsar, respectively. We aim at studying the capabilities of CTA regarding these objects through simulations, using the main tools currently in development for the CTA future data analysis: gammapy and ctools. We conclude that, even using conservative Instrument Response Functions, CTA will be able to resolve many uncertainties regarding the spectrum and morphology of the pulsar and its nebula. The large energy range covered by CTA will allow us to disentangle the nebula spectral shape among different hypotheses, corresponding to different underlying emitting mechanisms. In addition, resolving internal structures (smaller than ∼0.02° in size) in the nebula and unveiling their location, would provide crucial information about the propagation of particles in the magnetized medium. We used a theoretical asymmetric model to characterize the morphology of the nebula and we showed that if predictions of such morphology exist, for instance as a result of hydrodynamical or magneto-hydrodynamical simulations, it can be directly compared with CTA results. We also tested the capability of CTA to detect periodic radiation from the Crab pulsar obtaining a precise measurement of different light curves shapes.


2020 ◽  
Vol 496 (3) ◽  
pp. 3912-3928
Author(s):  
MAGIC Collaboration: V A Acciari ◽  
S Ansoldi ◽  
L A Antonelli ◽  
A Arbet Engels ◽  
A Babić ◽  
...  

ABSTRACT Extreme high-frequency BL Lacs (EHBL) feature their synchrotron peak of the broad-band spectral energy distribution (SED) at νs ≥ 1017 Hz. The BL Lac object 1ES 2344+514 was included in the EHBL family because of its impressive shift of the synchrotron peak in 1996. During the following years, the source appeared to be in a low state without showing any extreme behaviours. In 2016 August, 1ES 2344+514 was detected with the ground-based γ-ray telescope FACT during a high γ-ray state, triggering multiwavelength (MWL) observations. We studied the MWL light curves of 1ES 2344+514 during the 2016 flaring state, using data from radio to very-high-energy (VHE) γ-rays taken with OVRO, KAIT, KVA, NOT, some telescopes of the GASP-WEBT collaboration at the Teide, Crimean, and St. Petersburg observatories, Swift-UVOT, Swift-XRT, Fermi-LAT, FACT, and MAGIC. With simultaneous observations of the flare, we built the broad-band SED and studied it in the framework of a leptonic and a hadronic model. The VHE γ-ray observations show a flux level of 55 per cent of the Crab Nebula flux above 300 GeV, similar to the historical maximum of 1995. The combination of MAGIC and Fermi-LAT spectra provides an unprecedented characterization of the inverse-Compton peak for this object during a flaring episode. The Γ index of the intrinsic spectrum in the VHE γ-ray band is 2.04 ± 0.12stat ± 0.15sys. We find the source in an extreme state with a shift of the position of the synchrotron peak to frequencies above or equal to 1018 Hz.


2005 ◽  
Vol 20 (14) ◽  
pp. 3154-3155
Author(s):  
◽  
T. B. HUMENSKY

VERITAS is an array of 12-m imaging air-Cherenkov telescopes dedicated to gamma-ray astronomy in the 50 GeV - 50 TeV energy band. A prototype telescope was successfully operated between September 2003 and April 2004, yielding detections of the Crab Nebula and Mrk421 blazar. Construction has begun on the full array.


2020 ◽  
Vol 634 ◽  
pp. A22 ◽  
Author(s):  
S. Lombardi ◽  
O. Catalano ◽  
S. Scuderi ◽  
L. A. Antonelli ◽  
G. Pareschi ◽  
...  

We report on the first detection of very high-energy gamma-ray emission from the Crab Nebula by a Cherenkov telescope in dual-mirror Schwarzschild-Couder (SC) configuration. This result has been achieved by means of the 4 m ASTRI-Horn telescope, operated on Mt. Etna, Italy, and developed in the context of the Cherenkov Telescope Array Observatory preparatory phase. The dual-mirror SC design is aplanatic and characterized by a small plate scale, which allows us to implement large cameras with a large field of view, with small-size pixel sensors and a high level of compactness. The curved focal plane of the ASTRI camera is covered by silicon photo-multipliers, managed by an unconventional front-end electronic system that is based on a customized peak-sensing detector mode. The system includes internal and external calibration systems, hardware and software for control and acquisition, and the complete data archiving and processing chain. These observations of the Crab Nebula were carried out in December 2018 during the telescope verification phase for a total observation time (after data selection) of 24.4 h, equally divided between on- and off-axis source exposure. The camera system was still under commission and its functionality was not yet completely exploited. Furthermore, due to recent eruptions of the Etna Volcano, the mirror reflection efficiency was reduced. Nevertheless, the observations led to the detection of the source with a statistical significance of 5.4σ above an energy threshold of ∼3 TeV. This result provides an important step toward the use of dual-mirror systems in Cherenkov gamma-ray astronomy. A pathfinder mini-array based on nine ASTRI-like telescopes with a large field-of-view is in the course of implementation.


2019 ◽  
Vol 214 ◽  
pp. 03052
Author(s):  
Luisa Arrabito ◽  
Konrad Bernlöhr ◽  
Johan Bregeon ◽  
Paolo Cumani ◽  
Tarek Hassan ◽  
...  

The Cherenkov Telescope Array (CTA) is the next-generation instrument in the field of very high energy gamma-ray astronomy. It will be composed of two arrays of Imaging Atmospheric Cherenkov Telescopes, located at La Palma (Spain) and Paranal (Chile). The construction of CTA has just started with the installation of the first telescope on site at La Palma and the first data expected by the end of 2018. The scientific operations should begin in 2022 for a duration of about 30 years. The overall amount of data produced during these operations is around 27 PB per year. The associated computing power for data processing and Monte Carlo (MC) simulations is of the order of hundreds of millions of CPU HS06 hours per year. In order to cope with these high computing requirements, we have developed a production system prototype based on the DIRAC framework, that we have intensively exploited during the past 6 years to handle massive MC simulations on the grid for the CTA design and prototyping phases. CTA workflows are composed of several inter-dependent steps, which we used to handle separately within our production system. In order to fully automatize the whole workflows execution, we have partially revised the production system by further enhancing the data-driven behavior and by extending the use of meta-data to link together the different steps of a workflow. In this contribution we present the application of the production system to the last years MC campaigns as well as the recent production system evolution, intended to obtain a fully data-driven and automatized workflow execution for efficient processing of real telescope data.


2019 ◽  
Vol 491 (2) ◽  
pp. 2771-2778 ◽  
Author(s):  
L Costamante

ABSTRACT BL Lac objects can be extreme in two ways: with their synchrotron emission, peaking beyond 1 keV in their spectral energy distribution, or with their gamma-ray emission, peaking at multi-TeV energies up to and beyond 10–20 TeV, like 1ES 0229+200. This second type of extreme BL Lacs – which we can name TeV-peaked BL Lacs – is not well explained by the usual synchrotron self-Compton scenarios for BL Lacs. These sources are also important as probes for the intergalactic diffuse infrared background and cosmic magnetic fields, as well as possible sites of production of ultra-high-energy cosmic rays and neutrinos. However, all these studies are hindered by their still very limited number. Here I propose a new, simple criterium to select the best candidates for TeV observations, specifically aimed at this peculiar type of BL Lac objects by combining X-ray, gamma-ray, and infrared data. It is based on the observation of a clustering towards a high X-ray to GeV gamma-ray flux ratio, and it does not rely on the radio flux or X-ray spectrum. This makes it suitable to find TeV-peaked sources also with very faint radio emission. Taking advantage of the Fermi all-sky gamma-ray survey applied to the ROMA-BZCAT and Sedentary Survey samples, I produce an initial list of 47 TeV-peaked candidates for observations with present and future air-Cherenkov telescopes.


2013 ◽  
Vol 9 (S304) ◽  
pp. 119-124
Author(s):  
Helene Sol

AbstractThe extragalactic very high energy (VHE) gamma-ray sky is dominated at the moment by more than fifty blazars detected by the present imaging atmospheric Cherenkov telescopes (IACT), with a majority (about 90%) of high-frequency peaked BL Lac objects (HBL) and a small number of low-frequency peaked and intermediate BL Lac objects (LBL and IBL) and flat spectrum radio quasars (FSRQ). A significant variability is often observed, with time scales from a few minutes to months and years. The spectral energy distribution (SED) of these blazars typically shows two bumps from the radio to the TeV range, which can usually be described by leptonic or hadronic processes. While elementary bricks of the VHE emission scenarios seem now reasonably well identified, a global picture of these sources, describing the geometry and dynamics of the VHE zone, is not yet available. Multiwavelength monitoring and global alert network will be important to better constrain the picture, especially with the perspective of CTA, a major project of the next generation in ground-based gamma-ray astronomy.


2019 ◽  
Vol 491 (4) ◽  
pp. 5268-5276 ◽  
Author(s):  
Giorgio Galanti ◽  
Fabrizio Tavecchio ◽  
Marco Landoni

ABSTRACT Very-high-energy (VHE) BL Lacertae (BL Lac) spectra extending above $10 \, \rm TeV$ provide a unique opportunity for testing physics beyond the standard model of elementary particle and alternative blazar emission models. We consider the hadron beam scenario, the conversion of photons to axion-like particles (ALPs) and the Lorentz invariance violation (LIV) by analysing their consequences and induced modifications to BL Lac spectra. In particular, we consider how different processes can provide similar spectral features (e.g. hard tails) and we discuss the ways they can be disentangled. We use data from High-Energy Gamma-Ray Astronomy (HEGRA) of a high state of Markarian 501 and the High-Energy Stereoscopic System (H.E.S.S.) spectrum of the extreme BL Lac (EHBL) 1ES 0229+200. In addition, we consider two hypothetical EHBLs similar to 1ES 0229+200 located at redshifts z = 0.3 and z = 0.5. We observe that both the hadron beam and the photon–ALP oscillations predict a hard tail extending to energies larger than those possible in the standard scenario. Photon–ALP interaction predicts a peak in the spectra of distant BL Lacs at about $20\rm {-}30 \, \rm TeV$, while LIV produces a strong peak in all BL Lac spectra around $\sim 100 \, \rm TeV$. The peculiar feature of the photon–ALP conversion model is the production of oscillations in the spectral energy distribution, so that its detection/absence can be exploited to distinguish between the considered models. The above-mentioned features of the three models might be detected by the upcoming Cherenkov Telescope Array. Thus, future observations of BL Lac spectra could eventually shed light on new physics and alternative blazar emission models, driving fundamental research towards a specific direction.


Sign in / Sign up

Export Citation Format

Share Document