scholarly journals Study of the process e+e-→π+π-γ with the CMD-3 detector at the e+e- collider VEPP-2000

2019 ◽  
Vol 212 ◽  
pp. 04012
Author(s):  
S. S. Tolmachev ◽  
R. R. Akhmetshin ◽  
A. N. Amirkhanov ◽  
A. V. Anisenkov ◽  
V. M. Aulchenko ◽  
...  

Existing Monte-Carlo generators with radiative corrections to the e+e-→π+π- process are usually developed under the assumption that pions can be treated as pointlike particles. We study the e+e-→π+π-γ process with final-state radiation and test this assumption using simulated events from the MCGPJ generator based on the scalar QED hypothesis. In order to increase a fraction of events with FSR, the analysis was performed in the energy region to the left from the ρ-meson peak (660÷785 MeV) that is based on the integrated luminosity of about 8.4 pb-1. The experimental data for the photon energy spectrum agree with the simulation results at 1% level.

Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Eldred Lee ◽  
Kaitlin M. Anagnost ◽  
Zhehui Wang ◽  
Michael R. James ◽  
Eric R. Fossum ◽  
...  

High-energy (>20 keV) X-ray photon detection at high quantum yield, high spatial resolution, and short response time has long been an important area of study in physics. Scintillation is a prevalent method but limited in various ways. Directly detecting high-energy X-ray photons has been a challenge to this day, mainly due to low photon-to-photoelectron conversion efficiencies. Commercially available state-of-the-art Si direct detection products such as the Si charge-coupled device (CCD) are inefficient for >10 keV photons. Here, we present Monte Carlo simulation results and analyses to introduce a highly effective yet simple high-energy X-ray detection concept with significantly enhanced photon-to-electron conversion efficiencies composed of two layers: a top high-Z photon energy attenuation layer (PAL) and a bottom Si detector. We use the principle of photon energy down conversion, where high-energy X-ray photon energies are attenuated down to ≤10 keV via inelastic scattering suitable for efficient photoelectric absorption by Si. Our Monte Carlo simulation results demonstrate that a 10–30× increase in quantum yield can be achieved using PbTe PAL on Si, potentially advancing high-resolution, high-efficiency X-ray detection using PAL-enhanced Si CMOS image sensors.


2014 ◽  
Vol 44 (8) ◽  
pp. 1026-1030
Author(s):  
Mark G. Benz ◽  
Matthew W. Benz ◽  
Steven B. Birnbaum ◽  
Eric Chason ◽  
Brian W. Sheldon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document