bremsstrahlung photon
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
G. Grilli di Cortona ◽  
A. Messina ◽  
S. Piacentini

Abstract The search for dark matter weakly interacting massive particles with noble liquids has probed masses down and below a GeV/c2. The ultimate limit is represented by the experimental threshold on the energy transfer to the nuclear recoil. Currently, the experimental sensitivity has reached a threshold equivalent to a few ionization electrons. In these conditions, the contribution of a Bremsstrahlung photon or a so-called Migdal electron due to the sudden acceleration of a nucleus after a collision might be sizable. In the present work, we use a Bayesian approach to study how these effects can be exploited in experiments based on liquid argon detectors. In particular, taking inspiration from the DarkSide-50 public spectra, we develop a simulated experiment to show how the Migdal electron and the Bremsstrahlung photon allow to push the experimental sensitivity down to masses of 0.1 GeV/c2, extending the search region for dark matter particles of previous results. For these masses we estimate the effect of the Earth shielding that, for strongly interacting dark matter, makes any detector blind. Finally, we show how the sensitivity scales for higher exposure.


2020 ◽  
Vol 241 ◽  
pp. 01009
Author(s):  
Katrin Kohl ◽  
Stefan Alef ◽  
Patrick Bauer ◽  
Reinhard Beck ◽  
Alessandro Braghieri ◽  
...  

The BGO-OD experiment at the ELSA accelerator facility uses an energy tagged bremsstrahlung photon beam to investigate the excitation structure of the nucleon via meson photoproduction. The setup with a BGO calorimeter surrounding the target and an open dipole spectrometer covering the for ward region is ideally suited for investigating low momentum transfer processes, in particular in strangeness photoproduction. The associated photoproduction of K0S and hyperons is essential to understand the role of K* exchange mech anisms. A cusp-like structure observed in the yp → K0SΣ+ reaction at the K* threshold is described by models including dynamically generated resonances from vector meson-baryon interactions. Such interactions are pre dicted to give a peak like structure in K0SΣ0 photoproduction off the neutron. A very preliminary cross section is determined and compared to the prediction, the results appear to support the model


2020 ◽  
Vol 241 ◽  
pp. 01008
Author(s):  
Thomas Jude ◽  
Stefan Alef ◽  
Patrick Bauer ◽  
Reinhard Beck ◽  
Alessandro Braghieri ◽  
...  

The BGO-OD experiment at the ELSA accelerator facility uses an energy tagged bremsstrahlung photon beam to investigate the excitation structure of the nucleon. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating low momentum transfer processes due to the acceptance and high momentum resolution at forward angles. In particular, this enables the investigation of strangeness photoproduction where t-channel exchange mechanisms play an important role. This also allows access to low momentum exchange kinematics where extended, molecular structure may manifest in reaction mechanisms. First key results at low t indicate a cusp-like structure in K+Σ0 photoproduction at W = 1900 MeV, line shapes and differential cross sections for K+Λ(1405)→ K+Σ0π0, and a peak structure in K0SΣ0 photoproduction. The peak in the K0SΣ0 channel appears consistent with meson-baryon generated states, where equivalent models have been used to describe the PC pentaquark candidates in the heavy charmed quark sector.


2019 ◽  
Vol 44 (15) ◽  
pp. 3721 ◽  
Author(s):  
Sungkyun Oh ◽  
Sangeun Bae ◽  
Campbell D. Carter ◽  
Hyungrok Do

2019 ◽  
Vol 212 ◽  
pp. 01009 ◽  
Author(s):  
L Shekhtman ◽  
F Ignatov ◽  
V Tayursky

Simulation of background particle fluxes generated by colliding beams is performed with FLUKA package for the Super C-Tau factory Detector (SCTD). Two processes are considered as main sources of luminosity generated background: two-photon production of electron-positron pairs and Bha-Bha scattering with bremsstrahlung photon emission (radiative Bha-Bha). The SCTD geometry is described corresponding to the last version of the Conceptual Design Report. The magnetic field based on the calculation in ANSYS is introduced in the model. Main results of the simulation for beam energy of 3 GeV, luminosity of 1035 cm−2s−1 and 1.5 T magnetic field are the following: charged particle fluence in the region of the Inner Tracker (radius 5cm -20 cm, Z between -30cm and 30 cm) is between 105 particles/(cm2s) and ∼103 particles/(cm2s); 1-MeV neutron equivalent fluence for Si in the regions corresponding to electronics of the Inner Tracker and the Drift Chamber is below 1011 n/(cm2y) and absorbed dose is below 100 Gy/y in the hottest regions of the detector.


2017 ◽  
Vol 132 (3) ◽  
pp. 433-435
Author(s):  
H.O. Tekin ◽  
U. Kara ◽  
T. Manici ◽  
E.E. Altunsoy ◽  
T.T. Erguzel

Sign in / Sign up

Export Citation Format

Share Document