scholarly journals Monte Carlo Modeling and Design of Photon Energy Attenuation Layers for >10× Quantum Yield Enhancement in Si-Based Hard X-ray Detectors

Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Eldred Lee ◽  
Kaitlin M. Anagnost ◽  
Zhehui Wang ◽  
Michael R. James ◽  
Eric R. Fossum ◽  
...  

High-energy (>20 keV) X-ray photon detection at high quantum yield, high spatial resolution, and short response time has long been an important area of study in physics. Scintillation is a prevalent method but limited in various ways. Directly detecting high-energy X-ray photons has been a challenge to this day, mainly due to low photon-to-photoelectron conversion efficiencies. Commercially available state-of-the-art Si direct detection products such as the Si charge-coupled device (CCD) are inefficient for >10 keV photons. Here, we present Monte Carlo simulation results and analyses to introduce a highly effective yet simple high-energy X-ray detection concept with significantly enhanced photon-to-electron conversion efficiencies composed of two layers: a top high-Z photon energy attenuation layer (PAL) and a bottom Si detector. We use the principle of photon energy down conversion, where high-energy X-ray photon energies are attenuated down to ≤10 keV via inelastic scattering suitable for efficient photoelectric absorption by Si. Our Monte Carlo simulation results demonstrate that a 10–30× increase in quantum yield can be achieved using PbTe PAL on Si, potentially advancing high-resolution, high-efficiency X-ray detection using PAL-enhanced Si CMOS image sensors.

2010 ◽  
Vol 19 (6) ◽  
pp. 062901 ◽  
Author(s):  
Xu Hai-Bo ◽  
Peng Xian-Ke ◽  
Chen Chao-Bin

2022 ◽  
Vol 17 (01) ◽  
pp. C01037
Author(s):  
M. Collonge ◽  
P. Busca ◽  
P. Fajardo ◽  
M. Williams

Abstract This work presents the first simulation results of the incremental digital integration readout, a charge-integrating front-end scheme with in-pixel digitisation and accumulation. This novel readout concept is at the core of the XIDer (X-ray Integrating Detector) project, which aims to design 2D pixelated X-ray detectors optimised for high energy scattering and diffraction applications for the next generation of synchrotron radiation sources such as the ESRF Extremely Brilliant Source (EBS). The digital integration readout and the XIDer detector open the possibilities for high-duty-cycle operation under very high photon flux, fast frame-rate and high dynamic range with single-photon sensitivity in the 30–100 keV energy range. The readout method allows for noise-free effective X-ray detection. The digital integration concept is currently under investigation to evaluate the impact of main critical design parameters to identify the strengths and weaknesses of the readout scheme and consequently to propose refinements in the final implementation. Simulations have been performed with a dedicated Monte Carlo simulation tool, X-DECIMO, a modular Python package designed to recreate the complete detection chain of X-ray detectors for synchrotron radiation experiments. Losses and non-linearities of the readout scheme are simulated and quantified. In addition to presenting simulation results for this novel readout scheme, this work underlines the potential of the approach and some of its limitations.


2013 ◽  
Vol 275-277 ◽  
pp. 1994-1997
Author(s):  
Wen Jie Liu ◽  
Jun Liu ◽  
Zhi Qiang Xiao

In the field of the flash radiography scattering is one of the most important affecting factors in determining the object information. A state-of-the-art optical component called anti-scatter grid has been used in high energy X-ray radiography. But the application for such kind of module in sub-megavolt (100 keV ~ 1MeV) flash radiography has not been mentioned yet. Recently our group has designed a new grid which was different with the products either in high energy X-ray radiography or in low energy mammography. The grid was manufactured and then tested in a 450 keV flash radiography source. The experimental results indicated that the grid’s anti-scatter capability was superexcellent. The Monte Carlo simulation also confirmed the experimental conclusion and the scattered to primary ratios with and without the grid were evaluated quantificationally.


2012 ◽  
Vol 39 (7Part1) ◽  
pp. 4175-4186 ◽  
Author(s):  
Krasimir Mitev ◽  
Georgi Gerganov ◽  
Assen S. Kirov ◽  
C. Ross Schmidtlein ◽  
Yordan Madzhunkov ◽  
...  

Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 265-269
Author(s):  
Govert D. Geldof

In the practice of integrated water management we meet complexity, subjectivity and uncertainties. Uncertainties come into play when new urban water management techniques are applied. The art of a good design is not to reduce uncertainties as much as possible, but to find the middle course between cowardice and recklessness. This golden mean represents bravery. An interdisciplinary approach is needed to reach consensus. Calculating uncertainties by using Monte Carlo simulation results may be helpful.


Sign in / Sign up

Export Citation Format

Share Document