scholarly journals Estimating uncertainty of temperature measurements for studies of flow boiling heat transfer in minichannels

2019 ◽  
Vol 213 ◽  
pp. 02059
Author(s):  
Dariusz Michalski ◽  
Kinga Strąk ◽  
Magdalena Piasecka

This paper presents the method of estimating the uncertainty of temperature measurements conducted using K-type thermocouples in the study of flow boiling heat transfer in minichannels. During heat transfer experiments. the fluid temperature at the inlet and outlet of the minichannel is measured with thermocouples connected to a DaqLab 2005 data acquisition station. The major part of the experimental setup for calibration of temperature measurement included a calibrator of thermocouples. The thermocouples were manufactured by Czaki Thermo-Product. Poland. The temperatures recorded with the thermocouples were compared statistically while measuring the temperature of demineralised water at several characteristic points at liquid phase change or using the reference temperature known from the calibrator. The experimental error of the temperature measurement method was determined according to the principles of statistical analysis. Estimates of the mean value and the experimental standard deviation of the experimental error as well as the confidence interval for a single experimental error and the measurement accuracy were presented. The uncertainty of the difference in temperature was also calculated

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 927 ◽  
Author(s):  
Zhi-Chuan Sun ◽  
Xiang Ma ◽  
Lian-Xiang Ma ◽  
Wei Li ◽  
David Kukulka

An experimental investigation was conducted to explore the flow boiling heat transfer characteristics of refrigerants R134A and R410A inside a smooth tube, as well as inside two newly developed surface-enhanced tubes. The internal surface structures of the two enhanced tubes are comprised of protrusions/dimples and petal-shaped bumps/cavities. The equivalent inner diameter of all tested tubes is 11.5 mm, and the tube length is 2 m. The experimental test conditions included saturation temperatures of 6 °C and 10 °C; mass velocities ranging from 70 to 200 kg/(m2s); and heat fluxes ranging from 10 to 35 kW/m2, with inlet and outlet vapor quality of 0.2 and 0.8. It was observed that the enhanced tubes exhibit excellent flow boiling heat transfer performance. This can be attributed to the complex surface patterns of dimples and petal arrays that increase the active heat transfer area; in addition, more nucleation sites are produced, and there is also an increased interfacial turbulence. Results showed that the boiling heat transfer coefficient of the enhanced surface tubes was 1.15–1.66 times that of the smooth tubing. Also, effects of the flow pattern and saturated temperature are discussed. Finally, a comparison of several existing flow boiling heat transfer models using the data from the current study is presented.


Sign in / Sign up

Export Citation Format

Share Document