scholarly journals Strength evaluation of concrete elements with non-metallic reinforcement under short-term dynamic compression

2019 ◽  
Vol 221 ◽  
pp. 01035
Author(s):  
Vasilii Plevkov ◽  
Igor Baldin ◽  
Andrei Nevskii

The article presents a method for calculating the strength of concrete elements with non-metallic fiber, rod and external reinforcement. The algorithm and the calculation program are shown, which are based on the use of a nonlinear deformation model of the normal section of such elements, taking into account the real deformation properties of materials under static and short-term dynamic loading.

2020 ◽  
Vol 164 ◽  
pp. 14008
Author(s):  
Dmitriy Sarkisov ◽  
Nikolay Gorlenko ◽  
Gleb Gorynin ◽  
Yuri Sarkisov ◽  
Gafurzhan Izmailov ◽  
...  

The paper deals with research data of reinforced concrete rectangular and I-shaped cross-section elements, operating under oblique eccentric short-term dynamic compression, tension and bending. The method of reinforced concrete elements calculation using the theory of surfaces of relative resistance regarding strength and crack resistance is suggested. It is based on the deformation model with the use of real nonlinear diagrams of concrete and reinforcement. This method makes it possible to observe strength and crack resistance of reinforced concrete elements sections in the entire range of loadings from the central tension to axial compression. Experimental investigation of symmetrically reinforced concrete elements on oblique eccentric short-term dynamic compression, tension and oblique bending was carried out. Effect of longitudinal force level on strain distribution through the depth of section, bearing capacity, the failure scheme and other parameters are estimated.


2019 ◽  
Vol 974 ◽  
pp. 505-509
Author(s):  
D.S. Toshin

The perspective directions of the calculation method applied application based on the nonlinear deformation model are presented. Some examples of the elements reinforced sections calculation applicability method with flexible, rigid steel reinforcement, composite reinforcement are given as well as the application of this method for the calculation of the uneven distribution of the strength and deformative characteristics of concrete and other damage to reinforced concrete structures; for the gain structure design, including the non-removing load; to assess the stiffness and carrying capacity of the elements with composite sections of various combinations of materials; for the calculation of the effect of repeated, alternating loads. To a large extent, the possibility of a broad application of the nonlinear deformation model is provided by the flexible form of mathematical writing of expressions for determining stiffness characteristics, which are transformed to the requirements of the solved problem.


Author(s):  
О.В. Радайкин ◽  
Oleg Radaykin

At the standard calculation of the cracking moment for bending reinforced concrete elements the plasticity coefficient γ is normally used, which according to SP 63.13330.2012 is 35% less than in the old SNiP 2.03.01-84*. The question arises, what is the reason for such a noticeable difference and which of the methods gives more reliable results? This article seeks to answer this question. For this purpose the physical meaning of the coefficient γ was considered in detail, with the usage of a nonlinear deformation model of a normal section. A calculation formula for γ depending on an element’s reinforcement degree was obtained, which is valid for conventional concrete of B15-B35 class. A comparison of the calculated cracking moment according to the proposed method with experiments by the other authors was carried out. A good agreement of results was observed.


Sign in / Sign up

Export Citation Format

Share Document