scholarly journals Overview of hard hadron production results in ALICE

2019 ◽  
Vol 222 ◽  
pp. 01003
Author(s):  
Dmitri Peresunko

The ALICE experiment is designed to study the properties the hot and dense medium, the Quark-Gluon Plasma (QGP), produced in ultrarelativistic heavy-ion collisions at the LHC. Measuring production of hadrons with large Q2 transfer in these collisions provides the possibility to explore one of the most spectacular effects — the in-medium parton energy loss. By varying the observables among light and heavy flavored hadrons and fully reconstructed jets and by changing the colliding systems from pp to p–Pb and Pb–Pb, one can explore the transport properties of hot matter in great details. Here an overview of recent ALICE results on high-pT hadron and jet production in pp, p-A and A-A collisions at LHC energies is presented.

1991 ◽  
Vol 06 (04) ◽  
pp. 517-558 ◽  
Author(s):  
SIBAJI RAHA ◽  
BIKASH SINHA

We review the production of dilepton pairs, direct photons and diphoton pairs in ultrarelativistic heavy ion collisions, with special attention to the applicability of these particles as the signal for a new state of matter—the quark-gluon plasma.


2015 ◽  
Vol 24 (11) ◽  
pp. 1530014 ◽  
Author(s):  
Guang-You Qin ◽  
Xin-Nian Wang

Jet quenching in high-energy heavy-ion collisions can be used to probe properties of hot and dense quark–gluon plasma. We provide a brief introduction to the concept and framework for the study of jet quenching. Different approaches and implementation of multiple scattering and parton energy loss are discussed. Recent progresses in the theoretical and phenomenological studies of jet quenching in heavy-ion collisions at RHIC and LHC are reviewed.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Christopher Hills

Charmed baryons and their corresponding baryon-to-meson ratios are important tools to understand hadronisation processes in the Quark-Gluon Plasma produced in heavy-ion collisions. Recent Run 2 measurements in p–Pb collisions at 5.02 TeV, performed with the ALICE experiment at the LHC, are presented and compared to theoretical model predictions.


1997 ◽  
Vol 12 (28) ◽  
pp. 5151-5160 ◽  
Author(s):  
Jan-E Alam ◽  
Pradip Roy ◽  
Sourav Sarkar ◽  
Sibaji Raha ◽  
Bikash Sinha

We apply the momentum integrated Boltzmann transport equation to study the time evolution of various quark flavors in the central region of ultrarelativistic heavy ion collisions. The effects of thermal masses for quarks and gluons are incorporated to take into account the in-medium properties of these ingredients of the putative quark gluon plasma. We find that even under very optimistic conditions, complete chemical equilibration in the quark gluon plasma appears unlikely.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
You Zhou

Anisotropic flow phenomena are a key probe of the existence of Quark-Gluon Plasma. Several new observables associated with correlations between anisotropic flow harmonics are developed, which are expected to be sensitive to the initial fluctuations and transport properties of the created matter in heavy-ion collisions. I review recent developments of correlations of anisotropic flow harmonics. The experimental measurements, together with the comparisons to theoretical model calculations, open up new opportunities of exploring novel QCD dynamics in heavy-ion collisions.


Sign in / Sign up

Export Citation Format

Share Document