scholarly journals A prototype of pCT scanner: first tests

2021 ◽  
Vol 253 ◽  
pp. 09008
Author(s):  
J. A. Briz ◽  
I. Posadillo ◽  
V.G. Távora ◽  
E. Nácher ◽  
M.J.G. Borge ◽  
...  

Proton therapy technique for cancer treatment offers a high selectivity with respect to conventional radiotherapy with X- and γ-rays due to the properties of the interaction of protons with matter. Very accurate and precise treatment plans and a good control on the dose deposition are required to exploit the full potential of the technique. The substitution of the currently used X-ray Computed Tomography (xCT) by proton Computed Tomography (pCT) in the design of treatment plans would allow for a reduction in proton range uncertainties. This would make possible an important improvement in the accuracy and precision of treatment plans. With this aim, a prototype of pCT scanner is under study. It includes two tracking detectors which provide information on the proton trajectories and a residual energy detector to determine the energy loss while traversing the object scanned. A proof-of-concept experiment has been performed using low-energy protons and a simplified prototype with only the two tracking detectors. The results obtained in the measurement are presented and discussed.

Author(s):  
H. C. Corcoran ◽  
S. B. Brown ◽  
S. Robson ◽  
R. D. Speller ◽  
M. B. McCarthy

X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.


Author(s):  
Nunzio Randazzo ◽  
Valeria Sipala ◽  
Domenico Lo Presti ◽  
G.A.Pablo Cirrone ◽  
Giacomo Cottone ◽  
...  

Author(s):  
H. C. Corcoran ◽  
S. B. Brown ◽  
S. Robson ◽  
R. D. Speller ◽  
M. B. McCarthy

X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

2020 ◽  
Author(s):  
Shatadru Chakravarty ◽  
Jeremy Hix ◽  
Kaitlyn Wieweora ◽  
Maximilian Volk ◽  
Elizabeth Kenyon ◽  
...  

Here we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high CT contrast, circulation in blood for ~ 3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formuated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.


2013 ◽  
Vol 19 (S2) ◽  
pp. 630-631
Author(s):  
P. Mandal ◽  
W.K. Epting ◽  
S. Litster

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Sign in / Sign up

Export Citation Format

Share Document