scholarly journals A multivariate representation of compressed pin-by-pin cross sections

2021 ◽  
Vol 7 ◽  
pp. 8
Author(s):  
Daniele Tomatis

Since the 80’s, industrial core calculations employ the two-step scheme based on prior cross sections preparation with few energy groups and in homogenized reference geometries. Spatial homogenization in the fuel assembly quarters is the most frequent calculation option nowadays, relying on efficient nodal solvers using a coarse mesh. Pin-wise reaction rates are then reconstructed by dehomogenization techniques. The future trend of core calculations is moving however toward pin-by-pin explicit representations, where few-group cross sections are homogenized in the single pins at many physical conditions and many nuclides are selected for the simplified depletion chains. The resulting data model requires a considerable memory occupation on disk-files and the time needed to evaluate all data exceeds the limits for practical feasibility of multi-physics reactor calculations. In this work, we study the compression of pin-by-pin homogenized cross sections by the Hotelling transform in typical PWR fuel assemblies. The reconstruction of these quantities at different physical states of the assembly is then addressed by interpolation of only a few compressed coefficients, instead of interpolating separately each homogenized cross section. Savings in memory higher than 90% are observed, which result in important gains in runtime when interpolating the few-group data.

1958 ◽  
Vol 3 (4) ◽  
pp. 395-402 ◽  
Author(s):  
J. Halperin ◽  
J. O. Blomeke ◽  
D. A. Mrkvicka

1967 ◽  
Vol 45 (10) ◽  
pp. 3275-3296 ◽  
Author(s):  
P. J. Brancazio ◽  
A. Gilbert ◽  
A. G. W. Cameron

A preliminary investigation of the effects on abundances in stellar surfaces of extensive nuclear bombardment required the calculation of more than 105 nuclear-reaction cross sections. It was necessary to develop simplified methods for using the statistical theory of nuclear reactions to make these calculations in order that the computer time should not be prohibitive. These methods are described here and the results are compared with experiment. The accuracy of the calculations is, in general, about as good as, or somewhat better than, that obtained in previous applications of the statistical theory, probably because the use of an accurate level density formula outweighed the crudity of other approximations.


2005 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Ergisto Angeli ◽  
Agostino Tartari ◽  
Michele Frignani ◽  
Vincenzo Molinari ◽  
Domiziano Mostacci ◽  
...  

In recent years, research conducted in the US and in Italy has demonstrated production of radioisotopes in plasma focus devices, and particularly, on what could be termed "endogenous" production, to wit, production within the plasma it self, as opposed to irradiation of tar gets. This technique relies on the formation of localized small plasma zones characterized by very high densities and fairly high temperatures. The conditions prevailing in these zones lead to high nuclear reaction rates, as pointed out in previous work by several authors. Further investigation of the cross sections involved has proven necessary to model the phenomena involved. In this paper, the present status of research in this field is re viewed, both with regards to cross section models and to experimental production of radio isotopes. Possible out comes and further development are discussed.


2020 ◽  
Vol 13 ◽  
pp. 18
Author(s):  
P. Demetriou

Nuclear reaction rates play a crucial role in nuclear astrophysics. In the last decades there has been an enormous effort to measure reaction cross sections and extensive experimental databases have been compiled as a result. In spite of these efforts, most nuclear reaction network calculations still have to rely on theoretical predic- tions of experimentally unknown rates. In particular, in astrophysics applications such as the s-, r- and p-process nucleosynthesis involving a large number of nuclei and nuclear reactions (thousands). Moreover, most of the ingredients of the cal- culations of reaction rates have to be extrapolated to energy and/or mass regions that cannot be explored experimentally. For this reason it is important to develop global microscopic or semi-microscopic models of nuclear properties that give an accurate description of existing data and are reliable for predictions far away from the stability line. The need for more microscopic input parameters has led to new devel- opments within the Hartree-Fock-Bogoliubov method, some of which are presented in this paper.


Author(s):  
S. M. Dmitriev ◽  
A. V. Gerasimov ◽  
A. A. Dobrov ◽  
D. V. Doronkov ◽  
A. N. Pronin ◽  
...  

The article presents the results of experimental studies of the local hydrodynamics of the coolant flow in the mixed core of the VVER reactor, consisting of the TVSA-T and TVSA-T mod.2 fuel assemblies. Modeling of the flow of the coolant flow in the fuel rod bundle was carried out on an aerodynamic test stand. The research was carried out on a model of a fragment of a mixed core of a VVER reactor consisting of one TVSA-T segment and two segments of the TVSA-T.mod2. The flow pressure fields were measured with a five-channel pneumometric probe. The flow pressure field was converted to the direction and value of the coolant velocity vector according to the dependencies obtained during calibration. To obtain a detailed data of the flow, a characteristic cross-section area of the model was selected, including the space cross flow between fuel assemblies and four rows of fuel rods of each of the TVSA fuel assemblies. In the framework of this study the analysis of the spatial distribution of the projections of the velocity of the coolant flow was fulfilled that has made it possible to pinpoint regularities that are intrinsic to the coolant flowing around spacing, mixing and combined spacing grates of the TVSA. Also, the values of the transverse flow of the coolant caused by the flow along hydraulically nonidentical grates were determined and their localization in the longitudinal and cross sections of the experimental model was revealed. Besides, the effect of accumulation of hydrodynamic flow disturbances in the longitudinal and cross sections of the model caused by the staggered arrangement of hydraulically non-identical grates was determined. The results of the study of the coolant cross flow between fuel assemblies interaction, i.e. between the adjacent TVSA-T and TVSA-T mod.2 fuel assemblies were adopted for practical use in the JSC of “Afrikantov OKB Mechanical Engineering” for assessing the heat engineering reliability of VVER reactor cores; also, they were included in the database for verification of computational hydrodynamics programs (CFD codes) and for detailed cell-based calculation of the reactor core.


1994 ◽  
Vol 49 (2) ◽  
pp. 1205-1213 ◽  
Author(s):  
P. R. Wrean ◽  
C. R. Brune ◽  
R. W. Kavanagh

1987 ◽  
Vol 120 ◽  
pp. 31-41
Author(s):  
Kazuo Takayanagi

Among the low-energy nonreactive molecular collisions, the rotational and vibrational transitions are the most important inelastic processes. the collision partner is an electron, an ion, or a neutral particle. Depending on the process and the collision system concerned, the magnitude and the energy dependence of the relevant cross sections are widely different. the present status of our knowledge is briefly summarized and some sample cross section data for H2and CO are shown. Useful relations among the rotational cross sections are indicated. the importance of the long-range intermolecular forces in determining some chemical reaction rates is also pointed out.


Sign in / Sign up

Export Citation Format

Share Document