scholarly journals Ion Coulomb crystals: from quantum technology to chemistry close to the absolute zero point

2017 ◽  
Vol 48 (2) ◽  
pp. 17-20 ◽  
Author(s):  
O. Dulieu ◽  
S. Willitsch

Ion Coulomb crystals are ordered structures of atomic or molecular ions stored in ion traps at temperatures close to the absolute zero point. These unusual “crystals” form the basis of extremely accurate clocks, provide an environment for precise studies of chemical reactions and enable advanced implementations of the technology for a quantum computer. In this article, we discuss the techniques for generating atomic and molecular Coulomb crystals and highlight some of their applications.

2020 ◽  
Vol 10 (4) ◽  
pp. 35-39
Author(s):  
Xingwu Xu

This paper starts with the most basic concept of heat as well as temperature, historically investigates the understanding of the nature of heat, the conclusion is that the nature of heat is just a form of energy. This energy includes the zero-point energy providing by the motion of all subatomic particles. The new definition of temperature should be that it is the degree of matter’s motion. These matters include subatomic particles. Therefore, at the absolute zero, the “temperature” should still exist. On accounting of no subatomic particles’ motion in the singularity of the black hole, I proved that there exists a new absolute zero temperature there, which is lower than the existing one. The theory proposed in this paper can be supported by following means: measuring the temperature inside the black hole, letting electrons stop moving, and designing a Casimir vacuum pump.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

The Third Law was introduced in Chapter 9; this chapter develops the Third Law more fully, introducing absolute entropies, and examining how adiabatic demagnetisation can be used to approach the absolute zero of temperature.


2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Laszlo Gyongyosi

Abstract Superconducting gate-model quantum computer architectures provide an implementable model for practical quantum computations in the NISQ (noisy intermediate scale quantum) technology era. Due to hardware restrictions and decoherence, generating the physical layout of the quantum circuits of a gate-model quantum computer is a challenge. Here, we define a method for layout generation with a decoherence dynamics estimation in superconducting gate-model quantum computers. We propose an algorithm for the optimal placement of the quantum computational blocks of gate-model quantum circuits. We study the effects of capacitance interference on the distribution of the Gaussian noise in the Josephson energy.


1947 ◽  
Vol 15 (6) ◽  
pp. 451-457
Author(s):  
Simon A. Weissman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document