scholarly journals Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France

2005 ◽  
Vol 62 (5) ◽  
pp. 391-402 ◽  
Author(s):  
Laurent Bergès ◽  
Richard Chevalier ◽  
Yann Dumas ◽  
Alain Franc ◽  
Jean-Michel Gilbert
2013 ◽  
Vol 9 (1) ◽  
pp. 43-56
Author(s):  
Bálint Horváth ◽  
Viktória Tóth ◽  
Gyula Kovács

Abstract Vegetation beneath the canopy might be an important factor for macromoth community composition in forest ecosystems, strongly determined by forest management practices. Herein, we compared nocturnal macrolepidoptera communities and herb layers in young and old sessile oak (Quercus petraea) dominated forest stands in the Sopron Mountains (Western Hungary). The investigation of Lepidoptera species was performed 15 times from the end of March to the end of October in 2011. Portable light traps were used, and a total of 257 species and 5503 individuals were identified. The Geometridae family was the most abundant, followed by Noctuidae and Notodontidae. To investigate vascular plant species in the herb layer, circular plots with a 10-m radius around the moth traps were used. In each plot, we estimated the abundance of plant species in 20 sub-plots with a 1-m radius from May to July of 2011. The abundance of macromoth species was higher in the old forest stand, which might be influenced by the trees’ higher foliar biomass. However, the mean abundance of herbs was lower in the old forest. Diversity of both the herb layer and the moth community were significantly higher in the young forest. However we found higher species richness of moths in the old forest. For additional analyses, moths feeding on plants in the herb layer were selected, but neither the difference in species number, neither mean abundance between the young and old forest were significant. Our results suggest that the herb layer is not a key factor for macrolepidoptera communities in Hungarian sessile oak forest stands.


Trees ◽  
2021 ◽  
Author(s):  
Leila Arab ◽  
Stefan Seegmueller ◽  
Jürgen Kreuzwieser ◽  
Monika Eiblmeier ◽  
Michael Dannenmann ◽  
...  

Abstract Key message Sessile oak leaves showed a high degree of plasticity to atmospheric and pedospheric conditions. Abstract The aim of the present study was to elucidate the significance of current weather conditions for foliar traits of adult sessile oak (Quercus petraea), one of the most valuable forest tree species in Central Europe. For this purpose, structural and functional traits were analysed in fully expanded, sun exposed leaves collected in south-west Germany from five old-growth forest stands, representing the meteorological and pedospheric conditions in the growing region, but differing in aridity during the 12 days before harvest in two consecutive years. Across the forest stands, most foliar traits differed significantly between wet and dry weather conditions before harvest as indicated by partial least square discriminant analysis (PLS-DA). These traits included fresh weight/dry weight ratio, leaf hydration, leaf-C content, leaf-C/N ratio, structural N, soluble protein-N, total amino acid-N, cell wall composition, numerous specific amino acids as well as soluble sugar content. Structural biomass, δ13C signature, total N and total C as well as H2O2 contents were not affected by the weather before harvest. These results indicate a high plasticity of the foliar metabolism of drought-tolerant sessile oak to current weather conditions. They also suggest that sessile oak is characterized by a high potential to cope with the growth conditions expected as a consequence of future climate change.


2000 ◽  
Vol 78 (12) ◽  
pp. 1531-1544 ◽  
Author(s):  
Eric Nicolini ◽  
Daniel Barthélémy ◽  
Patrick Heuret

The growth and branching patterns of the main axis of 6-year-old sessile oak, growing in a natural regeneration in the north of France, were analysed each year retrospectively according to three increasing canopy density conditions: large gap, small gap, and dense canopy. Increasing gap size is associated with an increase in the total height, basal diameter, branching probability, and global polycyclism rate of the trees. At the growth unit or annual shoot level, from dense canopy to large gaps these botanical entities also show an increase in their total length, number of nodes, polycyclism, and branching rate as well as mean number of branches and mean internode length. A discussion of our results revealed some endogenous features of growth and branching patterns in young sessile oak trees. It is also shown that increasing canopy density generally tends to reduce the expression of the endogenous architectural sequence of differentiation of young sessile oak trees. Young trees growing below dense canopy thus seem to be "delayed" in their sequence of differentiation and appear to be in a "waiting" status, whereas young trees growing in large gaps exhibit an architecture very similar to trees growing in nurseries under nonlimiting growth conditions.Key words: architecture, Quercus petraea, growth, morphology, canopy density.


1966 ◽  
Vol 54 (1) ◽  
pp. 87 ◽  
Author(s):  
A. Carlisle ◽  
A. H. F. Brown ◽  
E. J. White

2021 ◽  
Vol 492 ◽  
pp. 119165
Author(s):  
Norbert Móricz ◽  
Gábor Illés ◽  
Ilona Mészáros ◽  
Balázs Garamszegi ◽  
Imre Berki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document