Total edge–vertex domination

2020 ◽  
Vol 54 ◽  
pp. 1 ◽  
Author(s):  
Abdulgani Sahin ◽  
Bünyamin Sahin

An edge e ev-dominates a vertex v which is a vertex of e, as well as every vertex adjacent to v. A subset D ⊆ E is an edge-vertex dominating set (in simply, ev-dominating set) of G, if every vertex of a graph G is ev-dominated by at least one edge of D. The minimum cardinality of an ev-dominating set is named with ev-domination number and denoted by γev(G). A subset D ⊆ E is a total edge-vertex dominating set (in simply, total ev-dominating set) of G, if D is an ev-dominating set and every edge of D shares an endpoint with other edge of D. The total ev-domination number of a graph G is denoted with γevt(G) and it is equal to the minimum cardinality of a total ev-dominating set. In this paper, we initiate to study total edge-vertex domination. We first show that calculating the number γevt(G) for bipartite graphs is NP-hard. We also show the upper bound γevt(T) ≤ (n − l + 2s − 1)∕2 for the total ev-domination number of a tree T, where T has order n, l leaves and s support vertices and we characterize the trees achieving this upper bound. Finally, we obtain total ev-domination number of paths and cycles.

2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A dominating set in a graph $G=(V,E)$ is a set $S$ such that every vertex of $G$ is either in $S$ or adjacent to a vertex in $S$. While the minimum cardinality of a dominating set in $G$ is called the domination number of $G$ denoted by $\gamma(G)$, the maximum cardinality of a minimal dominating set in $G$ is called the upper domination number of $G$ denoted by $\Gamma(G)$. We call the difference between these two parameters the \textit{domination gap} of $G$ and denote it by $\mu_d(G) = \Gamma(G) - \gamma(G)$. While a graph $G$ with $\mu_d(G)=0$ is said to be a \textit{well-dominated} graph, we call a graph $G$ with $\mu_d(G)=1$ an \textit{almost well-dominated} graph. In this work, we first establish an upper bound for the cardinality of bipartite graphs with $\mu_d(G)=k$, where $k\geq1$, and minimum degree at least two. We then provide a complete structural characterization of almost well-dominated bipartite graphs with minimum degree at least two. While the results by Finbow et al.~\cite{domination} imply that a 4-cycle is the only well-dominated bipartite graph with minimum degree at least two, we prove in this paper that there exist precisely 31 almost well-dominated bipartite graphs with minimum degree at least two.


2021 ◽  
Vol 55 ◽  
pp. 11
Author(s):  
P. Chakradhar ◽  
P. Venkata Subba Reddy

Let G = (V, E) be a simple, undirected and connected graph. A dominating set S is called a secure dominating set if for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and (S \{v}) ∪{u} is a dominating set of G. If further the vertex v ∈ S is unique, then S is called a perfect secure dominating set (PSDS). The perfect secure domination number γps(G) is the minimum cardinality of a perfect secure dominating set of G. Given a graph G and a positive integer k, the perfect secure domination (PSDOM) problem is to check whether G has a PSDS of size at most k. In this paper, we prove that PSDOM problem is NP-complete for split graphs, star convex bipartite graphs, comb convex bipartite graphs, planar graphs and dually chordal graphs. We propose a linear time algorithm to solve the PSDOM problem in caterpillar trees and also show that this problem is linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. Finally, we show that the domination and perfect secure domination problems are not equivalent in computational complexity aspects.


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


Author(s):  
Nitisha Singhwal ◽  
Palagiri Venkata Subba Reddy

Let [Formula: see text] be a simple, undirected and connected graph. A vertex [Formula: see text] of a simple, undirected graph [Formula: see text]-dominates all edges incident to at least one vertex in its closed neighborhood [Formula: see text]. A set [Formula: see text] of vertices is a vertex-edge dominating set of [Formula: see text], if every edge of graph [Formula: see text] is [Formula: see text]-dominated by some vertex of [Formula: see text]. A vertex-edge dominating set [Formula: see text] of [Formula: see text] is called a total vertex-edge dominating set if the induced subgraph [Formula: see text] has no isolated vertices. The total vertex-edge domination number [Formula: see text] is the minimum cardinality of a total vertex-edge dominating set of [Formula: see text]. In this paper, we prove that the decision problem corresponding to [Formula: see text] is NP-complete for chordal graphs, star convex bipartite graphs, comb convex bipartite graphs and planar graphs. The problem of determining [Formula: see text] of a graph [Formula: see text] is called the minimum total vertex-edge domination problem (MTVEDP). We prove that MTVEDP is linear time solvable for chain graphs and threshold graphs. We also show that MTVEDP can be approximated within approximation ratio of [Formula: see text]. It is shown that the domination and total vertex-edge domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MTVEDP is presented.


2019 ◽  
Vol 39 (1) ◽  
pp. 55-71 ◽  
Author(s):  
Andrzej Lingas ◽  
Mateusz Miotk ◽  
Jerzy Topp ◽  
Paweł Żyliński

Abstract A dominating set of a graph G is a set $$D\subseteq V_G$$D⊆VG such that every vertex in $$V_G-D$$VG-D is adjacent to at least one vertex in D, and the domination number $$\gamma (G)$$γ(G) of G is the minimum cardinality of a dominating set of G. A set $$C\subseteq V_G$$C⊆VG is a covering set of G if every edge of G has at least one vertex in C. The covering number $$\beta (G)$$β(G) of G is the minimum cardinality of a covering set of G. The set of connected graphs G for which $$\gamma (G)=\beta (G)$$γ(G)=β(G) is denoted by $${\mathcal {C}}_{\gamma =\beta }$$Cγ=β, whereas $${\mathcal {B}}$$B denotes the set of all connected bipartite graphs in which the domination number is equal to the cardinality of the smaller partite set. In this paper, we provide alternative characterizations of graphs belonging to $${\mathcal {C}}_{\gamma =\beta }$$Cγ=β and $${\mathcal {B}}$$B. Next, we present a quadratic time algorithm for recognizing bipartite graphs belonging to $${\mathcal {B}}$$B, and, as a side result, we conclude that the algorithm of Arumugam et al. (Discrete Appl Math 161:1859–1867, 2013) allows to recognize all the graphs belonging to the set $${\mathcal {C}}_{\gamma =\beta }$$Cγ=β in quadratic time either. Finally, we consider the related problem of patrolling grids with mobile guards, and show that it can be solved in $$O(n \log n + m)$$O(nlogn+m) time, where n is the number of line segments of the input grid and m is the number of its intersection points.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850012
Author(s):  
Purnima Gupta ◽  
Deepti Jain

A set [Formula: see text] is a [Formula: see text]-point set dominating set (2-psd set) of a graph [Formula: see text] if for any subset [Formula: see text], there exists a nonempty subset [Formula: see text] containing at most two vertices such that the subgraph [Formula: see text] induced by [Formula: see text] is connected. The [Formula: see text]-point set domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a 2-psd set of [Formula: see text]. In this paper, we determine the lower bounds and an upper bound on [Formula: see text] of a graph. We also characterize extremal graphs for the lower bounds and identify some well-known classes of both separable and nonseparable graphs attaining the upper bound.


2016 ◽  
Vol 08 (04) ◽  
pp. 1650064
Author(s):  
Seethu Varghese ◽  
A. Vijayakumar

The [Formula: see text]-power domination number, [Formula: see text], of a graph [Formula: see text] is the minimum cardinality of a [Formula: see text]-power dominating set of [Formula: see text]. In this paper, we initiate the study of the [Formula: see text]-power bondage number, [Formula: see text], of a graph [Formula: see text], i.e., the minimum cardinality among all sets [Formula: see text] for which [Formula: see text]. We obtain a sharp upper bound for [Formula: see text] in terms of the degree of [Formula: see text]. We prove that [Formula: see text] for any nonempty tree [Formula: see text] and also provide some conditions on [Formula: see text] for [Formula: see text].


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Frank A. Hernández Mira ◽  
Ernesto Parra Inza ◽  
José M. Sigarreta Almira ◽  
Nodari Vakhania

A nonempty subset D⊂V of vertices of a graph G=(V,E) is a dominating set if every vertex of this graph is adjacent to at least one vertex from this set except the vertices which belong to this set itself. D⊆V is a total k-dominating set if there are at least k vertices in set D adjacent to every vertex v∈V, and it is a global total k-dominating set if D is a total k-dominating set of both G and G¯. The global total k-domination number of G, denoted by γktg(G), is the minimum cardinality of a global total k-dominating set of G, GTkD-set. Here we derive upper and lower bounds of γktg(G), and develop a method that generates a GTkD-set from a GT(k−1)D-set for the successively increasing values of k. Based on this method, we establish a relationship between γ(k−1)tg(G) and γktg(G), which, in turn, provides another upper bound on γktg(G).


Sign in / Sign up

Export Citation Format

Share Document